The Art of Digital Black & White by Jeff Schewe There's Just Something
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CDOT Shaded Color and Grayscale Printing Reference File Management
CDOT Shaded Color and Grayscale Printing This document guides you through the set-up and printing process for shaded color and grayscale Sheet Files. This workflow may be used any time the user wants to highlight specific areas for things such as phasing plans, public meetings, ROW exhibits, etc. Please note that the use of raster images (jpg, bmp, tif, ets.) will dramatically increase the processing time during printing. Reference File Management Adjustments must be made to some of the reference file settings in order to achieve the desired print quality. The settings that need to be changed are the Slot Numbers and the Update Sequence. Slot Numbers are unique identifiers assigned to reference files and can be called out individually or in groups within a pen table for special processing during printing. The Update Sequence determines the order in which files are refreshed on the screen and printed on paper. Reference file Slot Number Categories: 0 = Sheet File (black)(this is the active dgn file.) 1-99 = Proposed Primary Discipline (Black) 100-199 = Existing Topo (light gray) 200-299 = Proposed Other Discipline (dark gray) 300-399 = Color Shaded Areas Note: All data placed in the Sheet File will be printed black. Items to be printed in color should be in their own file. Create a new file using the standard CDOT seed files and reference design elements to create color areas. If printing to a black and white printer all colors will be printed grayscale. Files can still be printed using the default printer drivers and pen tables, however shaded areas will lose their transparency and may print black depending on their level. -
Fast and Stable Color Balancing for Images and Augmented Reality
Fast and Stable Color Balancing for Images and Augmented Reality Thomas Oskam 1,2 Alexander Hornung 1 Robert W. Sumner 1 Markus Gross 1,2 1 Disney Research Zurich 2 ETH Zurich Abstract This paper addresses the problem of globally balanc- ing colors between images. The input to our algorithm is a sparse set of desired color correspondences between a source and a target image. The global color space trans- formation problem is then solved by computing a smooth Source Image Target Image Color Balanced vector field in CIE Lab color space that maps the gamut of the source to that of the target. We employ normalized ra- dial basis functions for which we compute optimized shape parameters based on the input images, allowing for more faithful and flexible color matching compared to existing RBF-, regression- or histogram-based techniques. Further- more, we show how the basic per-image matching can be Rendered Objects efficiently and robustly extended to the temporal domain us- Tracked Colors balancing Augmented Image ing RANSAC-based correspondence classification. Besides Figure 1. Two applications of our color balancing algorithm. Top: interactive color balancing for images, these properties ren- an underexposed image is balanced using only three user selected der our method extremely useful for automatic, consistent correspondences to a target image. Bottom: our extension for embedding of synthetic graphics in video, as required by temporally stable color balancing enables seamless compositing applications such as augmented reality. in augmented reality applications by using known colors in the scene as constraints. 1. Introduction even for different scenes. With today’s tools this process re- quires considerable, cost-intensive manual efforts. -
Grayscale Lithography Creating Complex 2.5D Structures in Thick Photoresist by Direct Laser Writing
EPIC Meeting on Wafer Level Optics Grayscale Lithography Creating complex 2.5D structures in thick photoresist by direct laser writing 07/11/2019 Dominique Collé - Grayscale Lithography Heidelberg Instruments in a Nutshell • A world leader in the production of innovative, high- precision maskless aligners and laser lithography systems • Extensive know-how in developing customized photolithography solutions • Providing customer support throughout system’s lifetime • Focus on high quality, high fidelity, high speed, and high precision • More than 200 employees worldwide (and growing fast) • 40 million Euros turnover in 2017 • Founded in 1984 • An installation base of over 800 systems in more than 50 countries • 35 years of experience 07/11/2019 Dominique Collé - Grayscale Lithography Principle of Grayscale Photolithography UV exposure with spatially modulated light intensity After development: the intensity gradient has been transferred into resist topography. Positive photoresist Substrate Afterward, the resist topography can be transfered to a different material: the substrate itself (etching) or a molding material (electroforming, OrmoStamp®). 07/11/2019 Dominique Collé - Grayscale Lithography Applications Microlens arrays Fresnel lenses Diffractive Optical elements • Wavefront sensor • Reduced lens volume • Modified phase profile • Fiber coupling • Mobile devices • Split & shape beam • Light homogenization • Miniature cameras • Complex light patterns 07/11/2019 Dominique Collé - Grayscale Lithography Applications Diffusers & reflectors -
Color Printing Techniques
4-H Photography Skill Guide Color Printing Techniques Enlarging Color Negatives Making your own color prints from Color Relations color negatives provides a whole new area of Before going ahead into this fascinating photography for you to enjoy. You can make subject of color printing, let’s make sure we prints nearly any size you want, from small ones understand some basic photographic color and to big enlargements. You can crop pictures for the visual relationships. composition that’s most pleasing to you. You can 1. White light (sunlight or the light from an control the lightness or darkness of the print, as enlarger lamp) is made up of three primary well as the color balance, and you can experiment colors: red, green, and blue. These colors are with control techniques to achieve just the effect known as additive primary colors. When you’re looking for. The possibilities for creating added together in approximately equal beautiful color prints are as great as your own amounts, they produce white light. imagination. You can print color negatives on conventional 2. Color‑negative film has a separate light‑ color printing paper. It’s the kind of paper your sensitive layer to correspond with each photofinisher uses. It requires precise processing of these three additive primary colors. in two or three chemical solutions and several Images recorded on these layers appear as washes in water. It can be processed in trays or a complementary (opposite) colors. drum processor. • A red subject records on the red‑sensitive layer as cyan (blue‑green). • A green subject records on the green‑ sensitive layer as magenta (blue‑red). -
Simplest Color Balance
Published in Image Processing On Line on 2011{10{24. Submitted on 2011{00{00, accepted on 2011{00{00. ISSN 2105{1232 c 2011 IPOL & the authors CC{BY{NC{SA This article is available online with supplementary materials, software, datasets and online demo at http://dx.doi.org/10.5201/ipol.2011.llmps-scb 2014/07/01 v0.5 IPOL article class Simplest Color Balance Nicolas Limare1, Jose-Luis Lisani2, Jean-Michel Morel1, Ana Bel´enPetro2, Catalina Sbert2 1 CMLA, ENS Cachan, France ([email protected], [email protected]) 2 TAMI, Universitat Illes Balears, Spain (fjoseluis.lisani, anabelen.petro, [email protected]) Abstract In this paper we present the simplest possible color balance algorithm. The assumption under- lying this algorithm is that the highest values of R, G, B observed in the image must correspond to white, and the lowest values to obscurity. The algorithm simply stretches, as much as it can, the values of the three channels Red, Green, Blue (R, G, B), so that they occupy the maximal possible range [0, 255] by applying an affine transform ax+b to each channel. Since many images contain a few aberrant pixels that already occupy the 0 and 255 values, the proposed method saturates a small percentage of the pixels with the highest values to 255 and a small percentage of the pixels with the lowest values to 0, before applying the affine transform. Source Code The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL web page of this article1. -
Grayscale Vs. Monochrome Scanning
13615 NE 126th Place #450 Kirkland, WA 98034 USA Website:www.pimage.com Grayscale vs. Monochrome Scanning This document is intended to discuss why it is so important to scan microfilm and microfiche in grayscale and to show the limitations of monochrome scanning. The best analogy for the limitations of monochrome scanning is if you have every tried to photocopy your driver licenses. The picture can go completely black. This is because the copier can only reproduce full black or full white and not gray levels. If you place the copier in photo mode it is able to reproduce shades of gray. Grayscale scanning is analogous to the photo modes setting on your copier. The types of items on microfilm that are difficult to reproduce in monochrome are pencil on a blue form, light signatures, date stamps and embossing. In grayscale these items have a much higher probability to reproduce in the scanned version. Certainly there are instances where filming errors exist and the film is almost pure black or pure white. This can happen if the door to the room was opened during filming, if the canister had light intrusion prior to developing or if the chemicals or temperature were off on the developer. If these are identified the vendor can make a lamp adjustment in these sections of film or if they are frequent and the vendor has the proper cameras, they can scan at a higher bit depth. We have the ability to scan at bit depths higher than 8 bit gray up to 12 bits. 8 bit supports 256 levels of gray, 10bit supports 1024 levels and 12 bit 4096 levels. -
Scanning & Halftones
SCANNING & HALFTONES Ethics It is strongly recommend that you observe the rights of the original artist or publisher of the images you scan. If you plan to use a previously published image, contact the artist or publisher for information on obtaining permission. Scanning an Image Scanning converts a continuous tone image into a bitmap. Original photographic prints and photographic transparencies (slides) are continuous tone. The scanning process captures picture data as pixels. Think of a pixel as one tile in a mosaic. Bitmapped images Three primary pieces of information are relevant to all bitmapped images. 1. Dimensions Example: 2" x 2" 2. Color Mode Example: 256 level grayscale scan 3. Resolution Example: 300 ppi Basic Steps of Scanning 1. Place image on scanner bed Scanning & Halftones 2. Preview the image – click Preview 3. Select area to be scanned – drag a selection rectangle 4. Determine scan resolution (dpi or ppi) 5. Determine mode or pixel depth (grayscale, color, line art) 6. Scale selected area to desired dimensions (% of original) 7. Scan Resolution Resolution is the amount of something. something amount amount over physical distance fabric the number of stitches in fabric the number of stitches per inch in a needlepoint film the amount of grain in film the number of grains in a micro meter in film digital image the number of pixels the number of pixels per inch in a digital image Resolution is a unit of measure: Input Resolution the number of pixels per inch (ppi) of a scanned image or an image captured with a digital camera On Screen Resolution the number of pixels per inch displayed on your computer monitor (ppi or dpi) Output Resolution the number of dots per inch (dpi) printed by the printer (laser printer, ink jet printer, imagesetter) dpi or ppi refer to square pixels per inch of a bitmap file. -
2.1 Identity LOGO
2.1 Identity LOGO Primary logo Limited use logos Circle of Trust icon Circle of Trust icon X X X Logotype X X Logotype X X Circle of Trust icon Logotype The proportion and arrangement of components Three logo lockup configurations are available. 0.625 in within the breastcancer.org logo have been The primary logo is the preferred lockup developed for consistent application across all and is to be used on all breastcancer.org breastcancer.org communications. branded materials. Note: The limited use logos are intended for rare Do not retypset, rearrange, or alter the logos situations where the primary logo will in any way. To maintain consistency, use not work, such as very narrow horizontal Smallest acceptable size for the primary logo only approved digital art files. or vertical formats. breastcancer.org guidelines | siegel+gale | November 2007 2.2 Identity CLEAR SPACE 3X 3X 3X 3X 3X 3X X 3X X 2X 3X 2X 2X X 2X Always surround the breastcancer.org logo by Note: the amount of free space specified above. Clear space specifications are provided to help maintain integrity and presence when logos are placed in proximity to competing visual elements. Positioning text, graphic elements, or other logos within the recommended clear space is not acceptable. breastcancer.org guidelines | siegel+gale | November 2007 2.3 Identity COLOR PALETTE BCO Pink BCO Fuschia BCO Soft Yellow BCO Dark Gray BCO Blue Primary colors Spot Uncoated Spot Coated CMYK RGB HTML BCO Pink PANTONE® 205 U PANTONE® 205 C C:0 M:83 Y:17 K:0 R:218 G:72 B:126 DA487E BCO Fuschia PANTONE® 220 U PANTONE® 220 C C:5 M:100 Y:22 K:23 R:163 G:0 B:80 A30050 Secondary colors BCO Soft Yellow PANTONE® 7403 U PANTONE® 7403 C C:0 M:11 Y:51 K:0 R:232 G:206 B:121 E8CE79 BCO Dark Gray PANTONE® Cool gray 9U PANTONE® Cool gray 9C C:0 M:0 Y:0 K:70 R:116 G:118 B:120 747678 BCO Blue PANTONE® 2955 U PANTONE® 2955 C C:100 M:55 Y:10 K:48 R:0 G:60 B:105 003C69 The breastcancer.org color palette comprises two primary colors and three secondary colors. -
Color Balance
TECHNOLOGY 3.2 – ADOBE® PHOTOSHOP® MINUTE7 STARTER Color Balance OBJECTIVES STEP 1 | LEARN By reviewing the Color Balance tutorial, students will learn how to modify the color balance of a photograph using Adobe® Photoshop®. STEP 2 | PRACTICE Students will use the Color Balance tutorial as a reference as they change the color balance of a photograph. Note: A practice photo is provided in the tutorial folder. STEP 3 | USE Students will apply knowledge when editing and reviewing photographs being published. 21ST CENTURY SKILLS Employment in the 21st century requires the ability to learn and use technology appropriately and effectively. Adobe Photoshop is an industry-standard software that allows for creative thinking. COMMON CORE ISTE STANDARDS ISTE STATE STANDARDS 1B: Create original works. ELA-Literacy.SL.9-12.5, CCRA.SL.5 6A: Understand and use technology systems. Make strategic use of digital media to 6B: Select and use applications effectively enhance understanding. and productively. 6C: Troubleshoot systems and applications. Do you have an idea for a 7-Minute Starter? Email us at [email protected] 14-0610 Color Balance Sometimes an image may have a slight color cast, either due to White Balance issues with the camera or simply because of artificial lighting indoors where the photo was taken. Color can be quickly neutralized by using Adobe® Photoshop’s® Auto Color feature located under the Image Tab. Auto Color adjusts the contrast and color of an image by searching the image to identify shadows, mid-tones and highlights. If the Auto Color tool doesn’t do the trick — the following method is an easy way to help remove the color cast from a photo using the Neutral Color Picker and may produce better results. -
Color Management Guide Printing with Epson Premium ICC Profiles Copyright Notice All Rights Reserved
Epson Professional Imaging Color Management Guide Printing With Epson Premium ICC Profiles Copyright Notice All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Seiko Epson Corporation. The information contained herein is designed only for use with this Epson product. Epson is not responsible for any use of this information as applied to other equipment. Neither Seiko Epson Corporation nor its affiliates shall be liable to the purchaser of this product or third parties for damages, losses, costs, or expenses incurred by purchaser or third parties as a result of: accident, misuse, or abuse of this product or unauthorized modifications, repairs, or alterations to this product, or (excluding the U.S.) failure to strictly comply with Seiko Epson Corporation’s operating and maintenance instructions. Seiko Epson Corporation shall not be liable for any damages or problems arising from the use of any options or any consumable products other than those designated as Original Epson Products or Epson Approved Products by Seiko Epson Corporation. Responsible Use of Copyrighted Materials Epson encourages each user to be responsible and respectful of the copyright laws when using any Epson product. While some countries’ laws permit limited copying or reuse of copyrighted material in certain circumstances, those circumstances may not be as broad as some people assume. Contact your legal advisor for any questions regarding copyright law. Trademarks Epson and Epson Stylus are registered trademarks, and Epson Exceed Your Vision is a registered logomark of Seiko Epson Corporation. -
Color Management Scanner Digital Camera Mobile Phone
Graphic Arts Workflow Lecture 12 Color Management Scanner Digital Camera Mobile Phone Device independent Color Representation ICC Profiles Gamut Mapping Image retouching Page Layout DFE Proofer Digital Printers Press Color Management Images look different on each device. Original Image Scanner Image Printer Image Images look different on each device. Color Management Device Differences Variations are due to: • Spectral distribution of the device components Difference in Spatial Resolutions (phosphors, filters, sensors)’ • Viewing conditions (dark/light, indoor/outdoors, illumination spectra) Printers 300-1200 dpi 1-4 intensity bits • media CRT Pitch 0.27 µ, 72 ppi, (projected/reflected light or print). TV 480 lines (analog) LCD 100 ppi, 8 intensity bits Camera 2 Megapixel, 10 intensity bits Scanner 600 dpi, 12 intensity bits Solution: Define a transform to map colors from color space of one device (source) to color space of another device (destination). Device Differences Device Differences Difference in Contrast and Brightness Range Difference in White Point QImagingKodak Nikon Genoacolor Device Differences Device Differences Difference in Gamut Difference in Gamut Monitor Gamut Printer Gamut Film Monitor Device Differences Gamut Mismatch Difference in Gamut How does one print this color? 0.8 display printer Scanner 0.6 y 0.4 0.2 Monitor 0 0 0.2 0.4 0.6 0.8 x This color never needed? printer Gamut Mismatch Gamut Mismatch How does one print this color? 0.8 display printer 0.6 y 0.4 0.2 0 0 0.2 0.4 0.6 0.8 x How does one display this color? The problem is twofold: 1) Differences in device representation 2) Differences in Gamut Size and Shape Gamut Mapping Gamut Mapping - Example In order to transfer color information between a source device and a destination device, one must define a mapping between the source Gamut to destination the destination Gamut. -
Comparing Appearance Models Using Pictorial Images
Comparing Appearance Models Using Pictorial Images Taek Gyu Kim, Roy S. Berns, and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester, New York Eight different color appearance models were tested using Appearance-Model Overview pictorial images. A psychophysical paired comparison ex- von Kries periment was performed where 30 color-normal observers ′ = ⋅ judged reference and test images via successive-Ganzfeld L kL L haploscopic viewing such that each eye maintained con- M′ = k ⋅ M stant chromatic adaptation and inter-ocular interactions M (1) ′ = ⋅ were minimized. It was found that models based on von S kS S Kries had best performance, specifically CIELAB, HUNT, RLAB, and von Kries. where L, M , and S represent the excitations of the long-, middle-, and short-wavelength sensitive cones, L′, M′, and ′ Introduction S represent the post-adaptation cone signals, and kL , kM , and kS are the multiplicative factors, generally taken to be Color appearance models are necessary to incorporate the inverse of the respective maximum cone excitations for into the color WYSIWYG chain when images are viewed the illuminating condition.3,4 The calculation of the cone under dissimilar conditions such as illumination spectral fundamentals is a linear transformation of CIE tristimulus power distribution and luminance, surround relative lu- values. In this case the Stiles-Estevez-Hunt-Pointer funda- minance, and media type where cognition is affected. mentals were used.2,9,17 (These are also used in the Hunt, These differing conditions often occur when compar- Nayatani, and RLAB models.) ing CRT and printed images, CRT and projected slides, or rear-illuminated transparencies and CRT or printed CIELAB images.