Assessment of Aspergillus Kinases As Targets for Antifungal Drug Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Aspergillus Kinases As Targets for Antifungal Drug Discovery ASSESSMENT OF ASPERGILLUS KINASES AS TARGETS FOR ANTIFUNGAL DRUG DISCOVERY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2019 NARJES CHYAD ALFURAIJI School of Biological Sciences Infection, Immunity and Respiratory Medicine Manchester Fungal Infection Group 1 List of Contents List of Contents ...................................................................................................................... 2 List of Tables ....................................................................................................................... 10 List of Figures ...................................................................................................................... 12 List of Abbreviations ........................................................................................................... 16 Declaration ........................................................................................................................... 19 Copyright Statement ............................................................................................................ 19 Dedication ............................................................................................................................ 20 Acknowledgments ................................................................................................................ 21 Chapter 1 : Fungi and Fungal Infections .............................................................................. 23 1.1 Introduction to fungi .................................................................................................. 23 1.1.1Polyploidy and fitness .......................................................................................... 24 1.1.2 Fungal biofilms ................................................................................................... 26 1.1.3.Importance of fungi ............................................................................................. 27 1.2 Fungal infections (Mycoses) ...................................................................................... 28 1.2.1 Superficial mycoses ............................................................................................ 30 1.2.2 Subcutaneous mycoses ........................................................................................ 31 1.2.3 Systemic mycoses ............................................................................................... 32 1.2.3.1 Systemic mycoses caused by primary pathogens......................................... 32 1.2.3.2 Systemic mycoses caused by opportunistic pathogens ................................ 33 1.2.3.2.1 Candidiasis ............................................................................................ 33 1.2.3.2.2 Aspergillosis .......................................................................................... 34 1.2.3.2.3 Mucormycosis (zygomycosis) .............................................................. 35 1.2.3.2.4 Pneumocystosis ..................................................................................... 36 1.2.3.2.5 Fusariosis .............................................................................................. 36 1.3 Antifungal pharmacology .......................................................................................... 37 1.3.1 Polyene antifungal drugs ..................................................................................... 37 1.3.2 Azole antifungals ................................................................................................ 39 1.3.2.1 Topical azoles .............................................................................................. 40 1.3.2.2 Oral Azoles .................................................................................................. 42 1.3.3. Echinocandins .................................................................................................... 44 1.3.4 Pyrimidine analogues .......................................................................................... 45 2 1.3.5 Allylamines, thiocarbamate and morpholines ..................................................... 46 1.3.6 Griseofulvin ........................................................................................................ 47 1.3.7 Developmental antifungal drug ........................................................................... 47 1.3.8 Combination therapy ........................................................................................... 48 1.4 Resistance to antifungal drugs ................................................................................... 50 1.4.1 Resistance to Polyenes ........................................................................................ 51 1.4.2 Resistance to echinocandins ................................................................................ 51 1.4.3 Resistance to flucytosine ..................................................................................... 52 1.4.4 Resistance to Azoles ........................................................................................... 53 1.4.4.1 Mechanisms of azole resistance ................................................................... 54 1.4.4.1.1 Increase of drug efflux .......................................................................... 54 1.4.4.1.2 Target mutation ..................................................................................... 55 1.4.4.1.3 Target expression deregulation ............................................................. 55 1.4.4.1.4 Ergosterol biosynthesis pathway alteration ........................................... 55 1.5 Protein Kinases are fundamental for all living organisms. ........................................ 58 1.5.1. Background ........................................................................................................ 58 1.5.1 Classification of protein kinase ........................................................................... 62 1.5.1.1 Conventional protein kinases ....................................................................... 62 1.5.1.2 Atypical protein kinase ................................................................................ 63 1.5.2 Human protein kinase ......................................................................................... 64 1.5.3 Kinases as drug target ......................................................................................... 66 1.6 Project overview ........................................................................................................ 69 1.6.1 Hypothesis ............................................................................................................... 69 1.6.2 Study plan ............................................................................................................... 70 1.6.3 Aims of the project .................................................................................................. 70 Chapter 2 : Materials and Methods ...................................................................................... 71 2.1 Bioinformatics ............................................................................................................ 71 2.1.1 Data search to identify the predicted kinases ...................................................... 71 2.1.2 Phylogenetic analysis .......................................................................................... 72 2.1.3 Kinases cluster and heat map analysis of kinases ............................................... 72 2.2 Gene knockout ........................................................................................................... 72 2.2.1 A. fumigatus strain, culture and growth conditions ............................................. 72 2.2.1.1 Handling of samples ..................................................................................... 73 2.2.1.2 A. fumigatus strains used in this study ......................................................... 73 2.2.1.3 Growth of A. fumigatus, spore harvesting and storage ................................ 73 3 2.2.1.4 Preparing PK mutants’ pool for competitive fitness study .......................... 74 2.2.1.5 Harvesting of fungal mycelia from pooled growth ...................................... 74 2.2.1.6 Growth of A. fumigatus A1160+ and PK mutants for total RNA extraction .................................................................................................................................. 74 2.2.1.7 Growth of A. fumigatus A1160+ and PK mutants for genomic DNA extraction .................................................................................................................. 75 2.2.2 Extraction of nucleic acids .................................................................................. 75 2.2.2.1 DNA extraction ............................................................................................ 75 2.2.2.1.1 DNA extraction from fungal spores using Cetyl Trimethyl Ammonium Bromide and glass beads ...................................................................................... 75 2.2.2.1.2 DNA extraction from fungal mycelia ................................................... 76 2.2.2.1.3 DNA extraction from infected lungs tissues ......................................... 76 2.2.2.1.4 DNA extraction from infected macrophage .........................................
Recommended publications
  • Estimated Burden of Fungal Infections in Oman
    Journal of Fungi Article Estimated Burden of Fungal Infections in Oman Abdullah M. S. Al-Hatmi 1,2,3,* , Mohammed A. Al-Shuhoumi 4 and David W. Denning 5 1 Department of microbiology, Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman 2 Department of microbiology, Centre of Expertise in Mycology Radboudumc/CWZ, 6500 Nijmegen, The Netherlands 3 Foundation of Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands 4 Ibri Hospital, Ministry of Health, Ibri 115, Oman; [email protected] 5 Manchester Fungal Infection Group, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, UK; [email protected] * Correspondence: [email protected]; Tel.: +968-25446328; Fax: +968-25446612 Abstract: For many years, fungi have emerged as significant and frequent opportunistic pathogens and nosocomial infections in many different populations at risk. Fungal infections include disease that varies from superficial to disseminated infections which are often fatal. No fungal disease is reportable in Oman. Many cases are admitted with underlying pathology, and fungal infection is often not documented. The burden of fungal infections in Oman is still unknown. Using disease frequencies from heterogeneous and robust data sources, we provide an estimation of the incidence and prevalence of Oman’s fungal diseases. An estimated 79,520 people in Oman are affected by a serious fungal infection each year, 1.7% of the population, not including fungal skin infections, chronic fungal rhinosinusitis or otitis externa. These figures are dominated by vaginal candidiasis, followed by allergic respiratory disease (fungal asthma). An estimated 244 patients develop invasive aspergillosis and at least 230 candidemia annually (5.4 and 5.0 per 100,000).
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Lamisil Versus Clotrimazole in the Treatment of Vulvovaginal Candidiasis
    Volume 5 Number 1 (March 2013) 86-90 Lamisil versus clotrimazole in the treatment of vulvovaginal candidiasis Ali Zarei Mahmoudabadi1,2, Mahin Najafyan3, Eskandar Moghimipour4, Maryam Alwanian1, Zahra Seifi1 1Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 2Infectious Diseases and Tropical Medicine Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 3Department of Obstetric and Genecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 4Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Received: March 2012, Accepted: October 2012. ABSTRACT Background and Objectives: Vaginal candidiasis is a common disease in women during their lifetime and occurs in diabetes patients, during pregnancy and oral contraceptives users. Although several antifungals are routinely used for treatment; however, vaginal candidiasis is a challenge for patients and gynecologists. The aim of the present study was to evaluate terbinafine (Lamisil) on Candida vaginitis versus clotrimazole. Materials and Methods: In the present study women suspected to have vulvovaginal candidiasis were sampled and disease confirmed using direct smear and culture examination from vaginal discharge. Then, patients were randomly divided into two groups, the first group (32 cases) was treated with clotrimazole and the next (25 cases) with Lamisil. All patients were followed-up to three weeks of treatment and therapeutic effects of both antifungal were compared. Results: Our results shows that 12 (37.5%) patients were completely treated with clotrimazole during two weeks and, 6(18.8%) patients did not respond to drugs and were refereed for fluconazole therapy. Fourteen (43.8%) patients showed moderate response and clotrimazole therapy was extended for one more week.
    [Show full text]
  • (KPIC) PPO and Out-Of- Area Indemnity (OOA) Drug Formulary with Specialty Drug Tier
    Kaiser Permanente Insurance Company (KPIC) PPO and Out-of- Area Indemnity (OOA) Drug Formulary with Specialty Drug Tier This Drug Formulary was updated: September 1, 2021 NOTE: This drug formulary is updated often and is subject to change. Upon revision, all previous versions of the drug formulary are no longer in effect. This document contains information regarding the drugs that are covered when you participate in the California Nongrandfathered PPO and Out-of- Area Indemnity (OOA) Health Insurance Plans with specialty drug tier offered by Kaiser Permanente Insurance Company (KPIC) and fill your prescription at a MedImpact network pharmacy. Access to the most current version of the Formulary can be obtained by visiting kp.org/kpic-ca-rx-ppo-ngf. For help understanding your KPIC insurance plan benefits, including cost sharing for drugs under the prescription drug benefit and under the medical benefit, please call 1-800-788-0710 or 711 (TTY) Monday through Friday, 7a.m. to 7p.m. For help with this Formulary, including the processes for submitting an exception request and requesting prior authorization and step therapy exceptions, please call MedImpact 24 hours a day, 7 days a week, at 1-800-788-2949 or 711 (TTY). For cost sharing information for the outpatient prescription drug benefits in your specific plan, please visit: kp.org/kpic-ca-rx-ppo-ngf. For help in your preferred language, please see the Kaiser Permanente Insurance Company Notice of Language Assistance in this document. KPIC PPO NGF Table of Contents Informational Section................................................................................................................................2
    [Show full text]
  • PRIOR AUTHORIZATION CRITERIA BRAND NAME (Generic) SPORANOX ORAL CAPSULES (Itraconazole)
    PRIOR AUTHORIZATION CRITERIA BRAND NAME (generic) SPORANOX ORAL CAPSULES (itraconazole) Status: CVS Caremark Criteria Type: Initial Prior Authorization Policy FDA-APPROVED INDICATIONS Sporanox (itraconazole) Capsules are indicated for the treatment of the following fungal infections in immunocompromised and non-immunocompromised patients: 1. Blastomycosis, pulmonary and extrapulmonary 2. Histoplasmosis, including chronic cavitary pulmonary disease and disseminated, non-meningeal histoplasmosis, and 3. Aspergillosis, pulmonary and extrapulmonary, in patients who are intolerant of or who are refractory to amphotericin B therapy. Specimens for fungal cultures and other relevant laboratory studies (wet mount, histopathology, serology) should be obtained before therapy to isolate and identify causative organisms. Therapy may be instituted before the results of the cultures and other laboratory studies are known; however, once these results become available, antiinfective therapy should be adjusted accordingly. Sporanox Capsules are also indicated for the treatment of the following fungal infections in non-immunocompromised patients: 1. Onychomycosis of the toenail, with or without fingernail involvement, due to dermatophytes (tinea unguium), and 2. Onychomycosis of the fingernail due to dermatophytes (tinea unguium). Prior to initiating treatment, appropriate nail specimens for laboratory testing (KOH preparation, fungal culture, or nail biopsy) should be obtained to confirm the diagnosis of onychomycosis. Compendial Uses Coccidioidomycosis2,3
    [Show full text]
  • Dermatologic Medication in Pregnancy
    Marušić et al. Acta Dermatovenerol Croat Subcutaneous dirofilariasis Acta Dermatovenerol Croat 2009;17(1):40-47 REVIEW Dermatologic Medication in Pregnancy Petra Turčić1, Zrinka Bukvić Mokos2, Ružica Jurakić Tončić2, Vladimir Blagaić3, Jasna Lipozenčić2 1School of Pharmacy and Biochemistry, University of Zagreb; 2University Department of Dermatology and Venereology, Zagreb University Hospital Center and School of Medicine; 3University Department of Obstetrics and Gynecology, Sveti Duh General Hospital, Zagreb, Croatia Corresponding author: SUMMARY In female body, a vast number of skin changes occur Petra Turčić, Phar. M. during pregnancy. Some of them are quite distressing to many women. Department of Pharmacology Therefore, performing treatment for physiologic skin changes during pregnancy with antiinfective agents, glucocorticosteroids, topical School of Pharmacy and Biochemistry immunomodulators, retinoids, minoxidil, etc., is discussed. Drug University of Zagreb administration during pregnancy must be reasonable. Domagojeva 2 KEY WORDS: dermatologic medication, pregnancy, physiologic skin HR-10000 Zagreb changes, treatment Croatia [email protected] Received: September 1, 2008 Accepted: January 9, 2009 INTRODUCTION In female body, a vast number of changes oc- bolic imbalances (3), diabetes and cardiovascular cur during pregnancy. Some of them are quite diseases (4). Pregnancy extends and alters the distressing to many women. Therefore, perform- impact of sex differences on absorption, distribu- ing treatment for these changes during pregnancy tion, metabolism and elimination (5). Cardiac out- is discussed. Normal pregnancy needs to avoid put is elevated early and remains elevated for the harmful drugs, both prescribed and over-the coun- remainder of pregnancy. Regional blood flow can ter, and drugs of abuse, including cigarettes, alco- change, with some areas of the skin having sub- hol as well as occupational and environmental ex- stantial increases in blood flow during the course posure to potentially harmful chemicals.
    [Show full text]
  • Emergence of Antifungal Resistance and the Promise of New Antifungal Agents
    Emergence of antifungal resistance and the promise of new antifungal agents 29th ECCMID, Amsterdam/Netherlands 13 – 16 April 2019 Cornelia Lass-Flörl Division of Hygiene and Medical Microbiology ESCMID eLibraryInnsbruck Medical University © by author Roadmap Emergence of antifungal resistance Drugs available New drugs in pipeline ESCMID eLibrary © by author Invasive candidiasis Drug resistance develops in pathogens C. glabrata and C. auris ESCMID Rhodutorula rubra –eLibraryR to echinocandins Requires early-stage treatment © byColonisation authorversus infection (?) Invasive and chronic aspergillosis Increasing resistance to azoles in A. fumigatus ESCMIDand cryptic species eLibrary& other Aspergilli Early treatment or prevention is essential © by Shift author to new “hosts” Mucormycosis Poor prognosis ESCMID Selection under Aspergillus eLibrary-covering drugs No or only few diagnostic tests © by author Disseminated cryptococcosis ESCMID Even with ART, there areeLibrary still many new cases No new therapies in more than 25 years © by author Dimorphic mycoses Geographically restricted ESCMID Infect both immunocompetent eLibrary and immunosuppressed pts A vaccine would be welcomed and is in development © by author Other fungi Lomentospora (Scedosporium) prolificans Paecilomyces lilacinus-R to amphotericin B and itraconazole difficult to treat ESCMID worse outcomeeLibrary © by author The polyenes: broadest drugs, side-effects & dosages are different, some pts tolerate others not, resistance is rarely acquired, most fungi are primary resistant, iv only,… The azoles: broad and small spectrum drugs, side-effects & dosages are different, iv and os, resistance induction is high, depends from drug to drug, cross resistance, multiple resistance mechanisms, … The echinocandins: focus on Candida, side-effects are low, dosages are different, iv, resistance induction is moderate, cross resistance (?), one fits all (?), resistance based mutations in FKS1, most prominently in C.
    [Show full text]
  • AIDS-Related Mycoses in the Paediatric Population
    Current Fungal Infection Reports (2019) 13:221–228 https://doi.org/10.1007/s12281-019-00352-8 PEDIATRIC FUNGAL INFECTIONS (D CORZO-LEON, SECTION EDITOR) AIDS-Related Mycoses in the Paediatric Population B. E. Ekeng1 & O. O. Olusoga2 & R. O. Oladele3 Published online: 16 November 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review Fungal infections account for significant morbidity and mortality in HIV-infected children particularly in developing countries where there is lack of skilled personnel and infrastructure to make the appropriate diagnosis. This is further compounded by poor availability and accessibility of the antifungals needed to treat these infections. The purpose of this review is to highlight the paucity of data on AIDS-related mycoses in the paediatric age group and make appropriate recommendations to address challenges associated with mycoses in this population. Recent Findings These infections are categorised in two broad groups in this population: mucocutaneous, which commonly affects nutrition and adherence to therapy and invasive fungal infections which are life-threatening. A literature search revealed a total of 29 published literatures across all AIDS-related mycoses in the paediatric population. Summary Research to determine the true burden of the problem and greater funding with implementation of a package of care that will result in substantial reductions in morbidity and mortality in relation to AIDS-related mycoses in children are needed. It is imperative that the programmatic optimal package of care for children with advanced HIV disease is designed and implemented. Keywords Mycoses . Paediatric . Advanced HIV disease . HIV/AIDS . LMICs Introduction defined as CD4+ of < 200 cells/mm3 or stage 3/4 disease (WHO staging) in children over 5 years of age, while any Advanced HIV disease (AHD) is one of the most current HIV-infected child less than 5 years is regarded as AHD [2••].
    [Show full text]
  • Fungal Infections (Mycoses): Dermatophytoses (Tinea, Ringworm)
    Editorial | Journal of Gandaki Medical College-Nepal Fungal Infections (Mycoses): Dermatophytoses (Tinea, Ringworm) Reddy KR Professor & Head Microbiology Department Gandaki Medical College & Teaching Hospital, Pokhara, Nepal Medical Mycology, a study of fungal epidemiology, ecology, pathogenesis, diagnosis, prevention and treatment in human beings, is a newly recognized discipline of biomedical sciences, advancing rapidly. Earlier, the fungi were believed to be mere contaminants, commensals or nonpathogenic agents but now these are commonly recognized as medically relevant organisms causing potentially fatal diseases. The discipline of medical mycology attained recognition as an independent medical speciality in the world sciences in 1910 when French dermatologist Journal of Raymond Jacques Adrien Sabouraud (1864 - 1936) published his seminal treatise Les Teignes. This monumental work was a comprehensive account of most of then GANDAKI known dermatophytes, which is still being referred by the mycologists. Thus he MEDICAL referred as the “Father of Medical Mycology”. COLLEGE- has laid down the foundation of the field of Medical Mycology. He has been aptly There are significant developments in treatment modalities of fungal infections NEPAL antifungal agent available. Nystatin was discovered in 1951 and subsequently and we have achieved new prospects. However, till 1950s there was no specific (J-GMC-N) amphotericin B was introduced in 1957 and was sanctioned for treatment of human beings. In the 1970s, the field was dominated by the azole derivatives. J-GMC-N | Volume 10 | Issue 01 developed to treat fungal infections. By the end of the 20th century, the fungi have Now this is the most active field of interest, where potential drugs are being January-June 2017 been reported to be developing drug resistance, especially among yeasts.
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Vr Meds Ex01 3B 0825S Coding Manual Supplement Page 1
    vr_meds_ex01_3b_0825s Coding Manual Supplement MEDNAME OTHER_CODE ATC_CODE SYSTEM THER_GP PHRM_GP CHEM_GP SODIUM FLUORIDE A12CD01 A01AA01 A A01 A01A A01AA SODIUM MONOFLUOROPHOSPHATE A12CD02 A01AA02 A A01 A01A A01AA HYDROGEN PEROXIDE D08AX01 A01AB02 A A01 A01A A01AB HYDROGEN PEROXIDE S02AA06 A01AB02 A A01 A01A A01AB CHLORHEXIDINE B05CA02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D08AC02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D09AA12 A01AB03 A A01 A01A A01AB CHLORHEXIDINE R02AA05 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S01AX09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S02AA09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S03AA04 A01AB03 A A01 A01A A01AB AMPHOTERICIN B A07AA07 A01AB04 A A01 A01A A01AB AMPHOTERICIN B G01AA03 A01AB04 A A01 A01A A01AB AMPHOTERICIN B J02AA01 A01AB04 A A01 A01A A01AB POLYNOXYLIN D01AE05 A01AB05 A A01 A01A A01AB OXYQUINOLINE D08AH03 A01AB07 A A01 A01A A01AB OXYQUINOLINE G01AC30 A01AB07 A A01 A01A A01AB OXYQUINOLINE R02AA14 A01AB07 A A01 A01A A01AB NEOMYCIN A07AA01 A01AB08 A A01 A01A A01AB NEOMYCIN B05CA09 A01AB08 A A01 A01A A01AB NEOMYCIN D06AX04 A01AB08 A A01 A01A A01AB NEOMYCIN J01GB05 A01AB08 A A01 A01A A01AB NEOMYCIN R02AB01 A01AB08 A A01 A01A A01AB NEOMYCIN S01AA03 A01AB08 A A01 A01A A01AB NEOMYCIN S02AA07 A01AB08 A A01 A01A A01AB NEOMYCIN S03AA01 A01AB08 A A01 A01A A01AB MICONAZOLE A07AC01 A01AB09 A A01 A01A A01AB MICONAZOLE D01AC02 A01AB09 A A01 A01A A01AB MICONAZOLE G01AF04 A01AB09 A A01 A01A A01AB MICONAZOLE J02AB01 A01AB09 A A01 A01A A01AB MICONAZOLE S02AA13 A01AB09 A A01 A01A A01AB NATAMYCIN A07AA03 A01AB10 A A01
    [Show full text]
  • A Geosentinel Analysis, 1997–2017
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Travel Manuscript Author Med. Author manuscript; Manuscript Author available in PMC 2019 July 15. Published in final edited form as: J Travel Med. 2018 August 01; 25(1): . doi:10.1093/jtm/tay055. Epidemiological aspects of travel-related systemic endemic mycoses: a GeoSentinel analysis, 1997–2017 Helmut J. F. Salzer1, Rhett J. Stoney2, Kristina M. Angelo2, Thierry Rolling3,4, Martin P. Grobusch5, Michael Libman6, Rogelio López-Vélez7, Alexandre Duvignaud8, Hilmir Ásgeirsson9,10, Clara Crespillo-Andújar11, Eli Schwartz12, Philippe Gautret13, Emmanuel Bottieau14, Sabine Jordan3, Christoph Lange1,15,16, Davidson H. Hamer17,18,*, and GeoSentinel Surveillance Network 1Division of Clinical Infectious Diseases and German Center for Infection Research Tuberculosis Unit, Research Center Borstel, Leibniz Lung Center, Borstel, Germany 2Travelers’ Health Branch, Division of Global Migration and Quarantine, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA 3Section of Infectious Diseases and Tropical Medicine, 1st Department of Internal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany 4Department of Clinical Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany 5Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands 6J. D. MacLean Centre for Tropical Diseases, McGill University, Montreal,
    [Show full text]