Oxygen Requirements for the Cambrian Explosion

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen Requirements for the Cambrian Explosion Journal of Earth Science, Vol. 27, No. 2, p. 187–195, April 2016 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-016-0690-8 Oxygen Requirements for the Cambrian Explosion Xingliang Zhang*, Linhao Cui Early Life Institute and State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China ABSTRACT: Hypoxic tolerance experiments may be helpful to constrain the oxygen requirement for animal evolution. Based on literature review, available data demonstrate that fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst mollusks are the least sensitive. Mortalities occur where O2 concentrations are below 2.0 mg/L, equivalent to saturation with oxygen content about 25% PAL (present atmospheric level). Therefore, the minimal oxygen requirement for maintaining animal diversity since Cambrian is determined as 25% PAL. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. Geological and geochemical studies suggest a constant increase of the oxygen level and a contraction of anoxic oceans during Ediacaran–Cambrian transition when the world oceans experienced a rapid diversification of metazoan lineages. However, fossil first appearances of animal phyla are obviously asynchronous and episodic, showing a sequence as: basal metazoans>lophotrochozoans>ecdysozoans and deuterostomes. According to hitherto known data of fossil record and hypoxic sensitivity of animals, the appearance sequence of different animals is broadly consistent with their hypoxic sensitivity: animals like molluscs and annelids that are less sensitive to hypoxia appeared earlier, while animals like echinoderms and fishes that are more sensitive to hypoxia came later. Therefore, it is very likely that the appearance order of animals is corresponding to the increasing oxygen level and/or the contraction of anoxic oceans during Ediacaran–Cambrian transition. KEY WORDS: oxygenation, Cambrian explosion, metazoan lineages, divergence, fossil first appearance. 0 INTRODUCTION view is challenged by the paucity of unequivocal metazoan Abrupt appearances of diverse animal lineages at the fossils before and during the Ediacaran period (Zhang and Shu, beginning of the Cambrian Period, known as the Cambrian 2014; Zhang et al., 2014). No matter metazoan lineages explosion (Cloud, 1948), has been puzzling the scientific world diverged earlier than or during the Cambrian explosion, the for around two centuries. Conscientious and concerted efforts metazoan-dominated marine ecosystem was established for the by multidiscipline scientists in recent decades have first time at the beginning of the Cambrian Period (Zhang and dramatically increased our knowledge on this unprecedented, Shu, 2014; Erwin and Tweedt, 2012). The initial ecological unique evolutionary event. On one hand, the Cambrian success may have been triggered by environmental perturbation explosion itself implies that the actual origination and near the Ediacaran-Cambrian boundary and subsequently divergence of metazoan phyla are no later than the Cambrian amplified by ecological interactions within reorganized explosion (Zhang and Shu, 2014). On the other hand, molecular ecosystems (Wang H Y et al., 2015; Zhang et al., 2014; clock studies suggest that the origination and diversification of Sperling et al, 2013a; Knoll and Carroll, 1999). In a word, the metazoan lineages predate their fossil first appearances, long Cambrian explosion happened when environmental changes before the Cambrian explosion (Erwin et al., 2011; Blair, 2009; crossed critical thresholds, led to the initial formation of the see Zhang and Shu, 2014 for a summary). Therefore, it is likely metazoan- dominated ecosystem through a series of knock-on that metazoans, at least stem lineages, originated and diverged ecological processes, i.e. “ecological snowball” effects (Zhang much earlier than their initial ecological success during the and Shu, 2014). Cambrian explosion, i.e. early divergence and later ecological Extant metazoans (multicellular animals) are grouped into success in the early history of animals (Erwin and Valentine, 38 phylum-level clades, paraphyletic basal metazoans having 2013; Erwin et al., 2011). However, such earlier divergence six phyla and the reminder 32 phyla comprising the Bilateria that are further classified into three monophyletic supraphyletic *Corresponding author: xzhang69@nwu.edu.cn clades, i.e. the Lophotrochozoa, the Ecodysozoa, and the © China University of Geosciences and Springer-Verlag Berlin Deuterostomia (Nielson, 2012). Thus far, 20 of the living Heidelberg 2016 animal phyla have been known to make their first appearances during the Cambrian explosion in an asynchronous manner Manuscript received March 05, 2015. (Zhang and Shu, 2014; Shu et al., 2014). This manner would Manuscript accepted September 12, 2015. raise questions such as: Why some phyla appeared earlier than Zhang, X. L. and Cui L. H., 2016. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 27(2): 187–195. doi:10.1007/s12583-016-0690-8. http://en.earth-science.net 188 Xingliang Zhang and Linhao Cui others in fossil record? Is the fossil appearance order of 2 OXYGEN REQUIREMENTS FOR METAZOAN different animal phyla consistent with the order of their LINEAGES originations? What controls the appearance sequence of animal Oxygen has long been proposed as a prerequisite to early phyla? This paper provides a possible explanation for the animal evolution. The minimal oxygen requirement has been questions by discussing three independent lines of evidence: (1) estimated based on different theoretical models but the results constraining the minimal oxygen requirement for metazoans on are quite variable (Sperling et al., 2013a, b; Catling et al., 2005; the basis of hypoxic sensitivity of different animals; (2) Runnegar, 1982; Cloud, 1976; Rhoads and Morse, 1971; checking the sequence of fossil first appearances of animal Berkner and Marshall, 1965) (Table 1). For example, the last phyla and determining whether the appearance order matches common ancestor of bilaterians, supposed to be sub-millimeter the hypoxic sensitivity of animals; (3) constraining the oxygen in size, has a very low oxygen requirement ranging from 0.14% levels during this Ediacaran–Cambrian transition and to 0.36% PAL (Sperling et al., 2013b), while the oxygen determining whether oxygen is sufficient enough for animal requirement for centimeter-sized metazoans with circulatory diversification during the critical interval. physiology, is loosely constrained between 10%–100% PAL (Catling et al., 2005). These estimates suggest that early 1 OXYGENATION AND LIFE EVOLUTION animals, in general, may have had relatively low oxygen It is generally accepted that fluctuations of atmospheric requirements. However, these theoretical efforts are based on oxygen levels play a significant role in shaping the evolution of highly simplified, very small organisms that do not reflect the life (Cloud, 1976). For example, the great oxidation event at complexity of living animals or Cambrian animals either. In Early Proterozoic is essentially important for the evolution of living animals the minimal oxygen requirement varies from early eukaryotes, the later oxidation event at the late lineages to lineages, which can be determined by empirical and Neoproterozoic allowed the metazoan evolution possible experimental evidence for hypoxic sensitivity of different (Lyons et al., 2012). The extremely high oxygen level during animals. Late Paleozoic, above 30% of oxygen content in atmosphere, Empirical evidence indicates that non-chemosymbiotic led to gigantism during this geological period. Sea scorpions at benthic macrofaunal (retained on 0.3 mm sieves) bilaterians the time reached 2.5 m in body length, dragonflies reached 70 can and do live in modern low-oxygen environments (Sperling cm wingspan, mayflies reached 45 cm wingspan, and et al., 2013b; Rhoads and Morse, 1971). Moreover, there is millipedes reached 2 m in length (Braddy et al., 2008; Petsch, evidence that a few metazoans can live under permanently 2004). anoxic and sulfidic conditions. Three species of the animal Advantages of oxygen for eukaryote evolution appear in phylum Loricifera have been known in the sediments of the many aspects. The formation of the ozone shelter, protecting deep anoxic, sulfidic and hypersaline L'Atalante basin eukaryotic organisms from UV radiation, requires the (Mediterranean Sea) (Danovaro et al., 2010). It is very atmospheric oxygen level above 1% PAL (see Kasting, 1993 interesting to find that anaerobic biochemistry and anaerobic and references therein). Based on eukaryotic physiology the mitochondria are widespread across metazoan lineages and all minimal requirement was determined approximately at this eukaryotic groups, which suggest that metazoan ancestors may level (Runnegar, 1991). The rise of oxygen level also allows have evolved in a more anoxic past (Mental and Martin, 2010). aerobic respiration, multicellularity, and large body size. The A recent experimental study shows that demosponges, aerobic metabolism is many-fold more efficient in extracting serving as analogs for early animals, are sensitive to anoxia and energy from foodstuffs. stagnant seawater, but can survive, and even thrive, under However, oxygen molecule is not always beneficial to oxygen levels as low as 0.5%–4% of present-day
Recommended publications
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]
  • Mcmenamin FM
    The Garden of Ediacara • Frontispiece: The Nama Group, Aus, Namibia, August 9, 1993. From left to right, A. Seilacher, E. Seilacher, P. Seilacher, M. McMenamin, H. Luginsland, and F. Pflüger. Photograph by C. K. Brain. The Garden of Ediacara • Discovering the First Complex Life Mark A. S. McMenamin C Columbia University Press New York C Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1998 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data McMenamin, Mark A. The garden of Ediacara : discovering the first complex life / Mark A. S. McMenamin. p. cm. Includes bibliographical references and index. ISBN 0-231-10558-4 (cloth) — ISBN 0–231–10559–2 (pbk.) 1. Paleontology—Precambrian. 2. Fossils. I. Title. QE724.M364 1998 560'.171—dc21 97-38073 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 9 8 7 6 5 4 3 2 1 p 10 9 8 7 6 5 4 3 2 1 For Gene Foley Desert Rat par excellence and to the memory of Professor Gonzalo Vidal This page intentionally left blank Contents Foreword • ix Preface • xiii Acknowledgments • xv 1. Mystery Fossil 1 2. The Sand Menagerie 11 3. Vermiforma 47 4. The Nama Group 61 5. Back to the Garden 121 6. Cloudina 157 7. Ophrydium 167 8. Reunite Rodinia! 173 9. The Mexican Find: Sonora 1995 189 10. The Lost World 213 11. A Family Tree 225 12. Awareness of Ediacara 239 13. Revenge of the Mole Rats 255 Epilogue: Parallel Evolution • 279 Appendix • 283 Index • 285 This page intentionally left blank Foreword Dorion Sagan Virtually as soon as earth’s crust cools enough to be hospitable to life, we find evidence of life on its surface.
    [Show full text]
  • Back Matter (PDF)
    Index Acraman impact ejecta layer 53–4, 117, 123, 126–9, Aspidella 130–2, 425–7 controversy 300, 301–3, 305 acritarchs ecology 303 Amadeus and Officer Basins 119 synonyms 302 biostratigraphy 115–25, 130–2 Australia Australian correlations 130–2 Acraman impact ejecta layer 53–4, 117, 123, 126–9, composite zonation scheme 119, 131, 132 130–2, 425–7 India 318–20 carbon isotope chemostratigraphy 126–9 Ireland 289 correlations of Ediacaran System and Period 18, Spain 232 115–35 sphaeromorphid 324 Marinoan glaciation 53–4, 126 Adelaide, Hallett Cove 68 Australia, Ediacaran System and Period Adelaide Rift Complex 115–22, 425 Bunyeroo–Wonoka Formation transition correlations with Officer Basin 127 137–9, 426 dating (Sr–Rb) 140 Centralian Superbasin 118, 125 generalized time–space diagram, correlations composite zonation scheme 131 between tectonic units 120 correlation methods and results 125–32 location maps 116, 118 time–space diagram 120 SE sector cumulative strata thickness 139 Vendian climatic indicators 17 stratigraphic correlation with Officer Basin 127 See also Adelaide Rift Complex; Flinders Ranges Stuart Shelf drill holes, correlations 117 Avalonian assemblages, Newfoundland 237–57, Sturtian (Umberatana) Group 116, 138 303–7, 427 Umberatana Group 116, 138 Africa backarc spreading, Altenfeld Formation 44–5, 47–8 Vendian climatic indicators 17 Baliana–Krol Group, NW Himalaya 319 see also Namibia Barut Formation, Iran 434 Aldanellidae 418 Bayesian analysis algal metaphyta, White Sea Region 271–4 eumetazoans 357–9 algal microfossils, White
    [Show full text]
  • New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain
    New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain ANDREY YU. ZHURAVLEV, ELADIO LIÑÁN, JOSÉ ANTONIO GÁMEZ VINTANED, FRANÇOISE DEBRENNE, and ALEKSANDR B. FEDOROV Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57 (1): 205–224. A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of or− ganization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Si− berian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina,the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoprotero− zoic trace fossil assemblages.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Terreneuvian Stratigraphy and Faunas from the Anabar Uplift, Siberia
    Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia ARTEM KOUCHINSKY, STEFAN BENGTSON, ED LANDING, MICHAEL STEINER, MICHAEL VENDRASCO, and KAREN ZIEGLER Kouchinsky, A., Bengtson, S., Landing, E., Steiner, M., Vendrasco, M., and Ziegler, K. 2017. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica 62 (2): 311‒440. Assemblages of mineralized skeletal fossils are described from limestone rocks of the lower Cambrian Nemakit-Daldyn, Medvezhya, Kugda-Yuryakh, Manykay, and lower Emyaksin formations exposed on the western and eastern flanks of the Anabar Uplift of the northern Siberian Platform. The skeletal fossil assemblages consist mainly of anabaritids, molluscs, and hyoliths, and also contain other taxa such as Blastulospongia, Chancelloria, Fomitchella, Hyolithellus, Platysolenites, Protohertzina, and Tianzhushanella. The first tianzhushanellids from Siberia, including Tianzhushanella tolli sp. nov., are described. The morphological variation of Protohertzina anabarica and Anabarites trisulcatus from their type locality is documented. Prominent longitudinal keels in the anabaritid Selindeochrea tripartita are demon- strated. Among the earliest molluscs from the Nemakit-Daldyn Formation, Purella and Yunnanopleura are interpreted as shelly parts of the same species. Fibrous microstructure of the outer layer and a wrinkled inner layer of mineralised cuticle in the organophosphatic sclerites of Fomitchella are reported. A siliceous composition of the globular fossil Blastulospongia
    [Show full text]
  • Constraining the Ediacaran-Cambrian Boundary in South China Using Acanthomorphic Acritarchs and Plaeopascichnus Fossils Kenneth Hugh O’Donnell
    Constraining the Ediacaran-Cambrian boundary in South China using acanthomorphic acritarchs and Plaeopascichnus fossils Kenneth Hugh O’Donnell Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Geosciences S. Xiao, Committee Chair Kenneth A. Eriksson Patricia E. Dove May 7, 2013 Blacksburg, VA Keywords: Biostratigraphy; Heliosphaeridium; Palaeopascichnus; acritarchs; acanthomorphic; Yanjiahe; Liuchapo; Niutitang; Ediacaran; Cambrian; South China Copyright 2013 Constraining the Ediacaran-Cambrian boundary in South China using acanthomorphic acritarchs and Palaeopascichnus fossils Kenneth O’Donnell ABSTRACT The Ediacaran-Cambrian boundary is arguably the most critical transition in Earth history. This boundary is currently defined by the GSSP (Global Stratotype Section and Point) at Fortune Head (Newfoundland, Canada) at a point that was once regarded as the first appearance of the branching trace fossil Treptichnus pedum. However, T. pedum has been subsequently found below the GSSP, and its distribution is largely restricted to sandstone facies where chemostratigraphic correlation tools are difficult to apply. Thus, the stratigraphic value of the Fortune Head GSSP has come under scrutiny, and there is a need to search for an alternative definition of this boundary using other biostratigraphic criteria. Investigations of acanthomorphic acritarchs in basal Cambrian strata of South China suggest that these microfossils may
    [Show full text]
  • A Problematic Animal Fossil from the Early Cambrian Hetang Formation, South China
    Journal of Paleontology, 93(6), 2019, p. 1047–1057 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2019.26 A problematic animal fossil from the early Cambrian Hetang Formation, South China Qing Tang,1 Jie Hu,2 Guwei Xie,3,4,5 Xunlai Yuan,6,7 Bin Wan,6 Chuanming Zhou,8 Xu Dong,9 Guohua Cao,9 Bruce S. Lieberman,10 Sally P. Leys,11 and Shuhai Xiao1 1Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <qingt@vt.edu>, <xiao@vt.edu> 2CNPC International (Chad) Co. Ltd., N’djamena, Chad <hujie@cnpcic.com> 3Institute of Exploration, Development and Research of PetroChina Company Limited Changqing Oilfield Branch, Xi’an 710018, China <xguwei_cq@petrochina.com.cn> 4National Engineering Laboratory for Exploration and Development of Low-permeability Oil & Gas Fields, Xi’an 710018, China 5Department of Geology, Northwest University, Xi’an 710069, China 6State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China <xlyuan@nigpas.ac.cn>, <binwan@nigpas.ac.cn> 7University of Chinese Academy of Sciences, Beijing 100039, China 8CAS Key Laboratory of Economic Stratigraphy and Palaeogeography,
    [Show full text]
  • The Two Phases of the Cambrian Explosion
    Edinburgh Research Explorer The two phases of the Cambrian Explosion Citation for published version: Zhuravlev, AY & Wood, R 2018, 'The two phases of the Cambrian Explosion', Scientific Reports. https://doi.org/10.1038/s41598-018-34962-y Digital Object Identifier (DOI): 10.1038/s41598-018-34962-y Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Scientific Reports General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 www.nature.com/scientificreports OPEN The two phases of the Cambrian Explosion Andrey Yu. Zhuravlev1 & Rachel A. Wood2 The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – Received: 18 July 2018 remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence Accepted: 24 October 2018 data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) Published: xx xx xxxx from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia.
    [Show full text]
  • Paleozoic Time Scale and Sea-Level History Sponsored, in Part, By: Time
    Paleozoic Time Scale and Sea-Level History Sponsored, in part, by: Time ScaLe R Creator Updated by James G. Ogg (Purdue University) and Gabi Ogg to: GEOLOGIC TIME SCALE 2004 Cen Mesozoic (Gradstein, F.M., Ogg, J.G., Smith, A.G., et al.2004) Paleozoic ICS Precambrian and The Concise Geologic Time Scale (Ogg, J.G., Ogg, G. & Gradstein, F.M., 2008) Paleozoic Sequences -- Haq and Schutter (Science, 2008) Paleozoic Sequences -- Geo- Standard Chronostratigraphy magnetic other studies Mega- Sequences Coastal Onlap and Mean Sea- Paleozoic Long- and Medium- Polarity Permian-Devonian Fusulinids and Benthic Sequences (nomenclature by Level (intermediate term) Short-Term Sea Level Resolution Perm- Ammonoid Zonation Conodont Zonation T-R Cycles Foraminifer Zonation Age Period Epoch Stage Primary of Sloss J. Ogg) 0 100 200m 0 100 200m Devon Sequences Upper Clarkina meishanensis Chang-3 251.5 R T Palaeofusulina sinensis - 251.8 Clarkina yini Parananlingellia end-Perm 252.23 end-Perm Iranites Clarkina changxingensis Changhsingian Chang-2 252.5 252.89 Clarkina subcarinata 253.02 Palaeofusulina minima Clarkina wangi 253.8 Chang-1 253.8 Chang-1? 253.8 254.57 Clarkina orientalis 255 255.12 Araxoceras Paradunbarulla Wuch-2 256.0 Clarkina transcaucasica Tansill/Wuch-2 256.44 Clarkina guangyuanensis Lopingian Wuchiapingian 257.32 Clarkina leveni 258.47 Roadoceras, Doulingoceras Codonofusiella Clarkina asymetrica Clarkina dukouensis Series Illawara 260 Clarkina postbitteri postbitteri 260.4 Wuch-1 260.4 Tansill/Wuch-1 260.5 Tansill/Wuch Clarkina postbitteri
    [Show full text]
  • Terreneuvian Stratigraphy and Faunas from the Anabar Uplift, Siberia
    Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia ARTEM KOUCHINSKY, STEFAN BENGTSON, ED LANDING, MICHAEL STEINER, MICHAEL VENDRASCO, and KAREN ZIEGLER Kouchinsky, A., Bengtson, S., Landing, E., Steiner, M., Vendrasco, M., and Ziegler, K. 2017. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica 62 (2): 311‒440. Assemblages of mineralized skeletal fossils are described from limestone rocks of the lower Cambrian Nemakit-Daldyn, Medvezhya, Kugda-Yuryakh, Manykay, and lower Emyaksin formations exposed on the western and eastern flanks of the Anabar Uplift of the northern Siberian Platform. The skeletal fossil assemblages consist mainly of anabaritids, molluscs, and hyoliths, and also contain other taxa such as Blastulospongia, Chancelloria, Fomitchella, Hyolithellus, Platysolenites, Protohertzina, and Tianzhushanella. The first tianzhushanellids from Siberia, including Tianzhushanella tolli sp. nov., are described. The morphological variation of Protohertzina anabarica and Anabarites trisulcatus from their type locality is documented. Prominent longitudinal keels in the anabaritid Selindeochrea tripartita are demon- strated. Among the earliest molluscs from the Nemakit-Daldyn Formation, Purella and Yunnanopleura are interpreted as shelly parts of the same species. Fibrous microstructure of the outer layer and a wrinkled inner layer of mineralised cuticle in the organophosphatic sclerites of Fomitchella are reported. A siliceous composition of the globular fossil Blastulospongia
    [Show full text]
  • Macizo Ibérico, España)
    Estudios Geológicos julio-diciembre 2018, 74(2), e084 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43012.470 A transitional Ediacaran–Cambrian biota in the Abenójar anticline (Iberian Massif, Spain) Una biota transicional Ediacárica–Cámbrica en el anticlinal de Abenójar (Macizo Ibérico, España) J. Simón1 1Dpto. Biología y Geología. IES Peñalba. Molinos de Viento s/n, Moral de Calatrava, Ciudad Real, Spain. Email: jsimon@edu. jccm.es; ORCID ID: http://orcid.org/0000-0002-0064-5672 ABSTRACT A sequence with a transitional Ediacaran–Cambrian biota is described from the Navezuelas stream valley, in the Abenójar anticline (Ibor Group, Central Iberian Zone, Spain). The sequence starts with fine-grained siliciclastics containing Vendotaenia antiqua and moulds of the early skeletal fossil Cloudina cf. hartmannae. These beds are followed by carbonates with Cloudina co-occurring at hand sample level with Vendotaenia antiqua together with protoconodonts similar to Protohertzina unguliformis, suggesting a terminal Ediacaran or lowermost Cambrian age. The detrital beds above this level have simple trace fossils of deposit feeders. Above an upper carbonate bed with tiny vendotaenids there is a trace fossil assemblage of Cambrian aspect, including Treptichnus pedum and ornamented burrows resembling the ventral surface of Psammichnites. The occurrence of protoconodonts is new to the Ediacaran–Cambrian transition in Europe, and this is the third time worldwide that these typically Cambrian fossils are found co-occurring unambiguously with the typically Ediacaran cloudinids, which suggests that the Ediacaran–Cambrian transition was biologically more gradual than previously thought. Keywords: Cambrian explosion; Cloudina, Ibor Group; Precambrian; protoconodonts. RESUMEN Se describe una secuencia conteniendo una biota transicional ediacárica–cámbrica, en el valle del arroyo de las Navezuelas, anticlinal de Abenójar (Grupo Ibor, Zona Centroibérica, España).
    [Show full text]