bioRxiv preprint doi: https://doi.org/10.1101/2020.12.28.424580; this version posted December 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin George Khelashvili1,2,¶, Anoop Narayana Pillai3*, Joon Lee3*, Kalpana Pandey3*, Alexander M. Payne4, Zarek Siegel 5, Michel A. Cuendet1,6, Tylor R. Lewis7, Vadim Y. Arshavsky7, Johannes Broichhagen8, Joshua Levitz3, Anant K. Menon3,¶ 1Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065 2Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065 3Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065 4Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, New York, NY, 10065 5Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093 6Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 7Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710 8Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Department of Chemical Biology, Robert- Rössle-Str. 10, 13125 Berlin, Germany *A.N.P., J. Lee and K.P. contributed equally to the experimental work ¶To whom correspondence should be addressed: George Khelashvili,
[email protected], and Anant K. Menon,
[email protected] Running title: Rhodopsin dimerization Keywords: dimerization, fluorescence resonance energy transfer (FRET), G protein-coupled receptor (GPCR), membrane protein, molecular dynamics, phospholipid scramblase, retinitis pigmentosa 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.28.424580; this version posted December 29, 2020.