05 Chapter 1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

05 Chapter 1.Pdf 5 CHAPTER I INTRODUCTION GENERAL PATHWAYS OF MICROBIAL DEGRADATION OF AROMATIC COMPOUNDS A number of microorganisms can perform various types of reactions (Fonken and Johnson, 1972; Beukers et al., 1972) such as oxidation, reduction, hydrolysis, esterification, phosphorylation etc. These enzymatic reactions enable the microorganism to either synthesize or degrade complex organic compounds with ease. Such studies have become important from both fundamental and applied considerations. The microorganisms which are frequently used are fungi or bacteria. A great deal of work has been done on the microbiological transformation of steroids (Charney and Herzog, 1967) and a number of transformations have actually been exploited for commercial applications (Briggs and Brotherton, 1970). To cite an example, cortisone (l) an adrenocorticoid hormone which was effective against rheumatoid arthritis, a grave crippling disease was prepared by a sequence of chemical reaction from bile acids involving 32 steps (Peterson, 1963; Briggs and Brotherton, 1970). The formidable step was the introduction of an oxygen function (Carbonyl group) in the position 11 of the steroidal nucleus. With the combined chemical and microbial methods, the sequence of steps was reduced to only 12. Amongst steroids, the compounds studied are hormones of androstane Biit ocidt and pregnane series, estrogens, bile acids, cardenolides and bufadienolides. Studies have also been carried out on the microbial transformation of terpenes (Ciegler, 1969; Abbott and Cledhill, 1971), carbohydrates (Vezinae et al., 1968) and alkaloids (lizuka and Naito, 1967; Vining, 1969). Besides these compounds the microbial transforma­ tion studies were also reported on antibiotics (Sebek and Perlman, 1971; Sebek, 1974), herbicides (Kaufman and Kearney, 1976) and pesticides (Bollag, 1974) etc. In recent years, there are also some reports on the microbial utilization of naturally occurring lignins (Crawford and Crawford, 1980), tannins and flavonoids (Barz and Hosel, 1975). In the present chapter attempt will be made to describe briefly the bio-degradation of aromatic compounds by microorganisms. However, a more detailed summary on the microbiological transformations of flavonoids which is the main subject of this dissertation is also included in this chapter. DEGRADATION OF AROMATIC CONPOUNDS Studies related to the microbiological transformation of aromatic compounds have grown considerably during the last thirty years. Degradation of aromatic compounds is a fascinating subject of research for several reasons. It provides an excellent example of the part played by the microbes in maintaining the balance of chemical compounds available to living systems. Microbes also degrade the aromatic compounds that are used as hormones, herbicides, pesticides and detergents, thus avoiding serious ecological changes. Interest in the microbial degradation of aromatic compounds centers around: (1) Studies on the metabolic intermediates (Abbott and Cledhill, 1971; Evans, 1969; Dagley, 1971; Chapman, 1972; Sugumaran and Vaidyanathan, 1978) in the degradation of different aromatic substrates; (ii) Enzymatic mechanisms of hydroxylation and ring fission (Hayaishi, 1964; 1968; Gibson, 1968); (ill) Investigations into the control of enzymes talcing part in the metabolism of aromatic compounds (Stanier and Ornston, 1973). Bacteria (Evans, 1969) are quite versatile in the breakdown of aromatic compounds, but several yeasts and fungi can also degrade a limited range of benzenoid structures. Among the eubacteria, representatives of the families Coccaceae, Mycpbacteriaceae, Pseudo- monadaceae, Splrillaceae, Bacteriaceae and Bacillaceae are able to utilize a large number of benzenoid compounds. Some of the yeasts like Oospora, Candida, Debaromyces, Pichia and Saccharomyces can utilize simple phenols as sole carbon source. While higher fungi like Aspergillus, PeniciIlium and Neurospora can attack benzenoid compounds. A variety of soil and wood-rotting fungi degrade the aromatic polymer of plant origin like flavonoids, tannins and lignins, In all these cases of aromatic ring metabolism, molecular oxygen is an obligatory oxidant. DEGRADATION UNDER AEROBIC CONDITIONS Degradation of substituted or polynuclear aromatic confounds to dihydroxyphenolst Microbes must manipulate a large variety of aromatic compounds into either ortho- or para-di hydroxy derivatives (Gibson, 1968), before cleavage can occur to give aliphatic compounds which are energy yielding reactions. The most common intermediates in the microbial degradation of many aromatic compounds are catechol (2), and protocatechuic acid (3) which are ortho-dihydroxyphenols or gentisic acid (4), which is a para-dihydroxyphenol. Microbes must degrade/ transform various kinds of aromatic compounds to the above dihydroxy compounds or their derivatives before ring cleavage occurs. Some typical examples of manipulation of aromatic compounds to dihydroxy- phenol derivatives by microbes are given below. (i) Aromatic acidic compounds; Aromatic acids can either be metabolised directly to catechol (2) or undergo hydroxylations, followed by decarboxylation COOH aOH I COOH OH 2 3 4 to form protocatechuic acid (3) (Fig. 1.1). Thus salicylic acid (5) is metabolised (Katagiri et al., 1965) by a Pseudomonas sp. to PatudomoncLG •OH GP OH COOH \j - COOH /r/eb/'-sej/a. a.eromenta OH OH ! 0H OH COOH COOH OH i> Wo HO COOH COOH COOH_ COOH S S^p—CCCH HO HO COOH OH ! y —— y OH 10 OH <«• 1.1. The degradative pathways of aromatic acids by bacteria (Buswell and Clark, 1976; Channa Heddy et al., 1976; Katagiri et ai., 1965; Reiner, 1971; Reiner and Hegeman, 1971; Ribbons and Evans, 1960; WhaUs et al., 1967). catechol (2) by oxidative decarboxylation* Similarly* benzoic acid (6) is transformed (Heiner, 1971; Seiner and Hegeman, 1971) by •tt-lcaligenes eutrophus to catechol (2) via 3,5-cyclohexadiene-1,2- diol-1-carboxylic acid (7). *hile a Pseudomonaa Sp. (Wheelis, et al 1967) metabolized benzoic acid (6) to protocatechuic acid (3) by sequential hydroxylation. Similarly phthalic acid (8) undergoes hydroxylation (Ribbons and Evans. 1960) by a feeudomonas Sp. to 4,5-dihydroxyphtbalate (9) which is then decarboxylated to protocatechuic acid (3). However, a strain of Bacillus transformed p-hydroxybenzoic acid (10) to gentisic acid (4) by an unusual pathway in which the migration of carboxylic acid group to ortho position due to the hydr0xy8*tioa (NIH shift) seems to have occurred (Buswell and Clark, 1976) (Fig. 1.1). Shile protocatechuic acid (3) is decarboxylated to catechol (2) by Klebisella aerogenee (Channa Reddy et al., 1976). (ii) Polynuclear aromatic compoundst Polynuclear aromatic compounds are first transformed to o-dihydroxy compounds which are further degraded finally to aliphatic compounds via catechol (Pig. 1.2). Thus benzene (11) was metabolised (Gibson, 1968) by a Pseudomonas Sp. to 3»5-cyclohexadien-1,2-cis-diol (12) through a cyclic peroxide intermediate. The intermediate (12) is then transformed to catechol (2) by enzymatic dehydrogenation. In a similar patheay, naphthalene (13) is first transformed (Jerina et al., 1971) by a soil Pseudomonas Sp. to cis-1,2-dihydroxy-1»2-dihydro- naphthalene (14) which on dehydrogenation gave 1,2-dihydrOxynaphthalene (15). The latter compound then undergoes ring cleavage (Davies and Evans, 1964) by the disruption of bond between the angular carbon and JH 0 I c$ M-OH 0=~ U II 13 18 */• + /r ft CH5COC0OH IS Vh %+ 25 Fig. 1.2. The pathways of degradation of benzene and other polycyclic aromatic compounds by soil Paeudomonas sp. (Daries and Evans, 1964; Evans et al., 1965; Gibson et al., 1968; Jerina et al., 1971). carbon-1 of the naphthalene nucleus to yield cis-o-hydroxybenzal- pyruvic acid (16) (anion form). The compound (16) is then cleaved to salicylaldehyde (18) and pyruvic acid (19) via i -hydroxy- r-o- hydroxyphenyl-oC-oxobutyric acid (17). Salicylaldehyde is then oxidatively decarboxylated to catechol (2) which is degraded further (Fig. 1.2). In the same way anthracene (20) and phenanthrene (23J are transformed (Evans et al., 1965) by a Pseudomonas Sp. to 1,2- dihydroxy compounds (22) and (25) via 1,2-di hydro-1,2-di hydroxy compounds (21) and (24) respectively. The 1,2-dihydroxy confounds (22) and (25) are degraded to catechol (2) by a similar pathway as described for the degradation of naphthalene (Fig. 1.2). (iii) Alkoxy aromatic compounds* Alkoxy aromatic compounds are dealkylated to give the parent phenol with the concomitant liberation of alkyl moiety as an aldehyde. Thus 4-methoxybenzoic acid (26) (Henderson, 1957), vanillic acid (28) (Cartwright and Smith, 1967; Henderson, 1961), the herbicide, 2,4-dichlorophenoxyacetic acid (29) (Tiedje and Alexander, 1969; Evans et al., 1971a) and 4-chloro-2-methylphenoxy- acetic acid (31) (Gaunt and Evans, 1971) are transformed to 4-hydroxybenzoic acid (27), protocatechuic acid (3), 2,4-dichloro- phenol (30) and 5-chloro-o-cresol (32) respectively by soil bacteria (Fig. 1.3). The phenols are further transformed to o-dihydroxy compounds which are degraded further to aliphatic compounds. OCH OH DM HCMO OH O-CHCOOM GCHjCOOH Fig. 1.3. The degradative pathways of metabolism of alkoxyaromatic compounds by soil bacteria (Cartwright and Smith, 1967; Evans, 1971; Henderson, 1957; 1961; Tiedje and Alexander, 1969). (iv) Alkyl aromatic compounds: Alkyi aromatic compounds are either hydroxylated to catechol systems or undergo successive oxidation of alkyl group to give substituted benzoic acid which is degraded
Recommended publications
  • Cloning, Biochemical Characterization and Inhibition of Alanine Racemase from Streptococcus Iniae
    bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cloning, Biochemical Characterization and Inhibition of Alanine racemase from Streptococcus iniae Murtala Muhammad, Yangyang Li, Siyu Gong, Yanmin Shi, Jiansong Ju, Baohua Zhao*, Dong Liu* College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; *Correspondence: Baohua Zhao and Dong Liu; E-mail: [email protected], [email protected]; College of Life Science, Hebei Normal University, Shijiazhuang 050024, China. Running Title: Inhibitors of alanine racemase Summary statement: Antimicrobial target 1 bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Streptococcus iniae is a pathogenic and zoonotic bacteria that impacted high mortality to many fish species, as well as capable of causing serious disease to humans. Alanine racemase (Alr, EC 5.1.1.1) is a pyridoxal-5′-phosphate (PLP)-containing homodimeric enzyme that catalyzes the racemization of L-alanine and D-alanine. In this study, we purified alanine racemase from the pathogenic strain of S. iniae, determined its biochemical characteristics and inhibitors. The alr gene has an open reading frame (ORF) of 1107 bp, encoding a protein of 369 amino acids, which has a molecular mass of 40 kDa. The optimal enzyme activity occurred at 35°C and a pH of 9.5.
    [Show full text]
  • Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93)
    Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93) Odedra, Nathabhai K., 2009, “Ethnobotany of Maher Tribe In Porbandar District, Gujarat, India”, thesis PhD, Saurashtra University http://etheses.saurashtrauniversity.edu/id/eprint/604 Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Saurashtra University Theses Service http://etheses.saurashtrauniversity.edu [email protected] © The Author ETHNOBOTANY OF MAHER TRIBE IN PORBANDAR DISTRICT, GUJARAT, INDIA A thesis submitted to the SAURASHTRA UNIVERSITY In partial fulfillment for the requirement For the degree of DDDoDoooccccttttoooorrrr ooofofff PPPhPhhhiiiilllloooossssoooopppphhhhyyyy In BBBoBooottttaaaannnnyyyy In faculty of science By NATHABHAI K. ODEDRA Under Supervision of Dr. B. A. JADEJA Lecturer Department of Botany M D Science College, Porbandar - 360575 January + 2009 ETHNOBOTANY OF MAHER TRIBE IN PORBANDAR DISTRICT, GUJARAT, INDIA A thesis submitted to the SAURASHTRA UNIVERSITY In partial fulfillment for the requirement For the degree of DDooooccccttttoooorrrr ooofofff PPPhPhhhiiiilllloooossssoooopppphhhhyyyy In BBoooottttaaaannnnyyyy In faculty of science By NATHABHAI K. ODEDRA Under Supervision of Dr. B. A. JADEJA Lecturer Department of Botany M D Science College, Porbandar - 360575 January + 2009 College Code.
    [Show full text]
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • The Clinical Significance of the Organic Acids Test
    The Clinical Significance of the Organic Acids Test The Organic Acids Test (OAT) provides an accurate metabolic snapshot of what is going on in the body. Besides offering the most complete and accurate evaluation of intestinal yeast and bacteria, it also provides information on important neurotransmitters, nutritional markers, glutathione status, oxalate metabolism, and much more. The test includes 76 urinary metabolite markers that can be very useful for discovering underlying causes of chronic illness. Patients and physicians report that treating yeast and bacterial abnormalities reduces fatigue, increases alertness and energy, improves sleep, normalizes bowel function, and reduces hyperactivity and abdominal pain. The OAT Assists in Evaluating: ■ Krebs Cycle Abnormalities ■ Neurotransmitter Levels ■ Nutritional Deficiencies ■ Antioxidant Deficiencies ■ Yeast and Clostridia Overgrowth ■ Fatty Acid Metabolism ■ Oxalate Levels ■ And More! The OAT Pairs Well with the Following Tests: ■ GPL-TOX: Toxic Non-Metal Chemical Profile ■ IgG Food Allergy + Candida ■ MycoTOX Profile ■ Phospholipase A2 Activity Test Learn how to better integrate the OAT into your practice, along with our other top tests by attending one of our GPL Academy Practitioner Workshops! Visit www.GPLWorkshops.com for workshop dates and locations. The following pages list the 76 metabolite markers of the Organic Acids Test. Included is the name of the metabolic marker, its clinical significance, and usual initial treatment. INTESTINAL MICROBIAL OVERGROWTH Yeast and Fungal Markers Elevated citramalic acid is produced mainly by Saccharomyces species or Propionibacteria Citramalic Acid overgrowth. High-potency, multi-strain probiotics may help rebalance GI flora. A metabolite produced by Aspergillus and possibly other fungal species in the GI tract. 5-Hydroxy-methyl- Prescription or natural antifungals, along with high-potency, multi-strain probiotics, furoic Acid may reduce overgrowth levels.
    [Show full text]
  • Xanthones. Part I V.* a New Synthesis of Hydroxyxanthones and Hydrozybenzophenones
    3982 Grover, Shah, agad Shah : Xanthones. Part I V.* A New Synthesis of Hydroxyxanthones and Hydrozybenzophenones. By P. I<. GROVER,G. D. SHAH,and R. C. SHAH. [Reprint Order No. 6470.1 Hydroxy-santhones and -benzophenones are conveniently obtained from hydroxybenzoic acids and phenols in presence of zinc chloride and phosphorus oxychloride. DISTILLATIONof a mixture of a phenol, a phenolic acid, and acetic anhydride is the earliest and simplest method for the synthesis of hydroxyxanthones (Michael, Amer. Chsm. J., 1883, 5, 81; Kostanecki and his co-workers, Ber., 1891, 24, 1896, 3981, etc.; Lund, Robertson, and Whalley, J., 1953, 2438), but yields are often poor, experimental conditions are rather drastic, and there is a possibility of decarboxylation, autocondensation, and other side reactions (Lespegnol, Bertrand, and Dupas, BUZZ. SOC.chim. France, 1939, 6, 1925; Lund et aZ., Zoc. cit.). There are numerous other routes, but none is of general application and some require uncommon starting materials or involve a number of steps. In continuation of the work on naturally occurring xanthones (J. Indian Chem. SOC., 1953,30,457,463; J. Sci. Id.Res., India, 1954,13, B, 175; 1955,14, B, 153) the known methods for the synthesis of 1 : 3 : 7 : 8-tetrahydroxyxanthone or its tetramethyl ether * Part 111, J. Sci. Ind. Res., India, 1954, 13, B, 175. [ 19551 Xanthones. Part IV. 3953 were found unsuitable. Condensation under mild conditions of a phenolcarboxylic acid with a reactive phenol in presence of condensing agents such as anhydrous aluminium chloride, phosphorus oxychloride, phosphoric oxide, or sulphuric acid was not promising ; but a mixture of phosphorus oxychloride and fused zinc chloride, which had previously been found effective for the preparation of 2 : 4dihydroxybenzophenone (Shah and Mehta, J.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]
  • Chondroprotective Agents
    Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof.
    [Show full text]
  • Amino Acid Disorders
    471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue.
    [Show full text]
  • Orfadin, INN-Nitisinone
    SCIENTIFIC DISCUSSION 1. Introduction 1.1 Problem statement Hereditary tyrosinaemia type 1 (HT-1) is a devastating inherited disease, mainly of childhood. It is characterised by severe liver dysfunction, impaired coagulation, painful neurological crises, renal tubular dysfunction and a considerable risk of hepatocellular carcinoma (Weinberg et al. 1976, Halvorsen 1990, Kvittingen 1991, van Spronsen et al. 1994, Mitchell et al. 1995). The condition is caused by an inborn error in the final step of the tyrosine degradation pathway (Lindblad et al. 1977). The incidence of HT-1 in Europe and North America is about one in 100,000 births, although in certain areas the incidence is considerably higher. In the province of Quebec, Canada, it is about one in 20,000 births (Mitchell et al. 1995). The mode of inheritance is autosomal recessive. The primary enzymatic defect in HT-1 is a reduced activity of fumarylacetoacetate hydrolase (FAH) in the liver, the last enzyme in the tyrosine degradation pathway. As a consequence, fumaylacetoacetate (FAA) and maleylacetoacetate (MAA), upstream of the enzymatic block, accumulate. Both intermediates are highly reactive and unstable and cannot be detected in the serum or urine of affected children. Degradation products of MAA and FAA are succinylacetone (SA) and succinylacetoacetate (SAA) which are (especially SA) toxic, and which are measurable in the serum and urine and are hallmarks of the disease. SA is also an inhibitor of Porphobilinogen synthase (PBG), leading to an accumulation of 5-aminolevulinate (5-ALA) which is thought to be responsible for the neurologic crises resembling the crises of the porphyrias. The accumulation of toxic metabolites starts at birth and the severity of phenotype is reflected in the age of onset of symptoms (Halvorsen 1990, van Spronsen et al.
    [Show full text]
  • Relation Structure/Activité De Tanins Bioactifs Contre Les Nématodes
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : Mme JESSICA QUIJADA PINANGO le jeudi 17 décembre 2015 Titre : RELATION STRUCTURE/ACTIVITE DE TANINS BIOACTIFS CONTRE LES NEMATODES GASTROINTESTINAUX (HAEMONCHUS CONTORTUS) PARASITES DES PETITS RUMINANTS Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Interactions Hôtes - Agents Pathogènes (IHAP) Directeur(s) de Thèse : M. HERVÉ HOSTE Rapporteurs : M. ADIBE LUIZ ABDALLA, UNIVERSIDAD DE SAO PAULO Mme HEIDI ENEMARK, NORWEGIAN VETERINARY INSTITUTE Membre(s) du jury : 1 M. FRANÇOIS SCHELCHER, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Président 2 M. HERVÉ HOSTE, INRA TOULOUSE, Membre 2 Mme CARINE MARIE-MAGDELAINE, INRA PETIT BOURG, Membre 2 M. SMARO SOTIRAKI, HAO-DEMETER, Membre 2 M. VINCENT NIDERKORN, INRA CLERMONT FERRAND, Membre QUIJADA J. 2015 Cette thèse est dédiée à mes parents, Teresa et Héctor, À mon mari, Rafäel, pour son soutien inconditionnel, son amour illimité, sa patience, sa loyauté, son amitié et surtout sa confidence, À ma grand-mère, Marcolina, car m'ait donné le plus grand et précieux cadeau en ma vie : ma foi en Dieu ma forteresse et mon espoir (Isaïas 41:13). À mes adorés sœurs, belle- sœurs et frère : Yurlin, Indira, Iskay, Olga, Zoraida et Jesus. Merci pour l’amour infini que m’ont toujours été donné, celui qu’a été prolongé par l'amour de mes merveilleux neveux. 1 QUIJADA J. 2015 REMERCIEMENTS Je remercie tout d’abord mon Dieu pour me donner le cadeau de la vie, et la forteresse pour vivre chaque jour.
    [Show full text]