Relating the Cost of Spinning Silk to the Tendency to Share It for Three Embiids

Total Page:16

File Type:pdf, Size:1020Kb

Relating the Cost of Spinning Silk to the Tendency to Share It for Three Embiids BEHAVIOR Relating the Cost of Spinning Silk to the Tendency to Share It for Three Embiids with Different Lifestyles (Order Embiidina: Clothodidae, Notoligotomidae, and Australembiidae) 1 J. S. EDGERLY, S. M. SHENOY, AND V. G. WERNER Department of Biology, Santa Clara University, Santa Clara, CA 95053 Environ. Entomol. 35(2): 448Ð457 (2006) ABSTRACT Although adult female embiids (Order Embiidina) superÞcially lack morphological diversity, their variety of habitats may impose distinct selective pressures on behavior, such as their use of silk and their tendency to aggregate. For example, where silk serves as a primary defense from environmental threats, coloniality might be adaptive. The cost of production or spinning might also prompt them to share silk. These ideas were tested in laboratory trials involving three species of embiids with different lifestyles: an arboreal species (Antipaluria urichi (Saussure) from a neotropical rain forest, a species (Notoligotoma hardyi (Frederichs) that dwells on surfaces of granite outcrops in Australia, and another Australian species (Australembia incompta Ross) that stitches leaf litter together. The cost of spinning silk was analyzed by recording CO2 output in the short term during spinning and by measuring performance in long-term trials where embiids were forced to repeatedly replace their silk. Their subsequent development or reproductive output was scored. Overall, the cost of spinning was relatively low. However, the tendencies to spin and to aggregate varied in a manner related to how silk is used in the Þeld. As such, the more exposed the embiid is to the elements, as for the two species that spin on surfaces, the more silk they spun and the more likely they settled near a neighbor. In contrast, the embiid that used dead leaves (not silk) as walls for their abodes produced scant silk and showed little tendency to aggregate. KEY WORDS Embioptera, webspinner, silk, social evolution, metabolic cost LIVING IN SILKEN ABODES deÞnes lifestyles for many study, we will brießy review relevant research on arthropods, especially for masterful weavers such as arthropod silks. insects in the order Embiidina. Silk serves as nesting Generalizations cannot easily be made about the material, retreats, protection for eggs, and coverings cost of silk production. In some cases, spinning is not over foraging zones. Because silk-using arthropods costly materially, metabolically, or behaviorally, range from solitary to colonial to communal, research- whereas in others, direct impacts on performance ers have been able to apply comparative methods to have been shown. For example, caddisßy larvae that determine how silk use relates to social evolution (as spin extra silk lose more weight than starved individ- in social spiders; see references in Avile´s 1997, Uetz uals, suggesting a high cost of spinning for these insects and Hieber 1997). An argument with some support is (Dudgeon 1987). Behavioral mechanisms may have that coloniality may be favored when the costs of silk evolved in response to costs associated with spinning. production are high for any individual and beneÞts of For example, Jakob (1991) showed that pholcid spi- sharing are great. The purpose of this report is to derlings beneÞted by sharing silk with older conspe- summarize results of a comparative study studying silk ciÞcs because of the relatively high cost of spinning, spinning in the context of natural history in the order Embiidina (or Embiodea, see Grimaldi and Engel despite a loss of food to competitors. Tietjen (1986) 2005). Through a series of laboratory experiments, we showed that as colony size increased for the social evaluated possible costs of spinning and explored spider Mallos gregalis (Simon) individuals beneÞted whether embiids can reduce costs by sharing silk. by living in a group because each contributed less silk Embiids that construct complex, extensive silk abodes to the shared nest and spent more time sitting still. In may be more likely to form groups; those relying more their review of spider evolution, Uetz and Hieber on building materials in the environment may be less (1997) emphasized that a common element promot- prone to do so. Before describing methods for this ing coloniality for some spider species is the three- dimensionality of their aggregations and considerable energetic savings for individuals sharing silk. In con- 1 Corresponding author, e-mail: [email protected]. trast, Avile´s (1997), in a review of permanent- sociality 0046-225X/06/0448Ð0457$04.00/0 ᭧ 2006 Entomological Society of America April 2006 EDGERLY ET AL.: SILK SPINNING DIVERSITY IN EMBIIDS 449 in spiders, did not identify silk as a catalyst for social ing sites (domiciles) to foraging zones. Generally, em- evolution. biids live hidden within silk in motherÐoffspring as- While it seems that costs can promote group- living, sociations. In the humid tropics, large-bodied embiids alternatively, dependence on silk may lead to aggres- can form conspicuous and extensive colonies that sion. For example, in laboratory experiments, parsnip cover entire tree trunks where they graze on algae and webworm larvae defended webs from potential usurp- lichens (see references in Edgerly 1997, Ross 2000). In ers and, when given a choice, adopted empty webs arid zones, they retreat underground in crevices, rather than spun new ones (Berenbaum et al. 1993, emerging (especially after rain) at the surface, par- Green et al. 1998). Comparative work on spider spe- ticularly at rockÐsoil boundaries, to feed on vegetation cies that range in how much silk they use showed that or detritus. the more individuals invested in silk for construction, To test our ideas, we selected three species that vary the less likely they were to relocate where they had to in their use of silk in the Þeld. The focal species were spin anew (Tanaka 1989). Apparently, the function of as follows: the relatively large arboreal embiid Anti- silk can inßuence dispersion of individuals. paluria urichi (Saussure) (Clothodidae) of the Trin- The degree of reliance on silk and the tendency to idad rain forest, a facultatively colonial species that share it may depend on challenges imposed by envi- often forms large colonies (Edgerly 1987b, 1994); N. ronmental factors. In a search for function, Seibt and hardyi of subtropical Queensland, Australia, which Wickler (1990) found that silk nests of two social lives mostly on granite outcrops, but also on bark, species of Stegodyphus spiders in South Africa did not where they spin dense silk and feed on lichens; and protect occupants from potentially serious threatsÑ Australembia incompta Ross (Australembiidae), also wind, hail, direct sun radiation, desiccation, or over- of Queensland, which stitches dead leaves together heating. The authors concluded that predation on the and feeds on detritus on the forest ßoor (Edgerly and spiders was more signiÞcant in promoting sharing silk Rooks 2004). We evaluated short- and long-term costs and sociality (Seibt and Wickler 1988). Likewise, of spinning and tested whether sharing silk may func- Edgerly et al. (2005) discovered that embiid silk in tion to reduce such costs. We also tested how readily Queensland, Australia, did not protect against over- adult females spun silk and whether they tended to heating in colonies exposed to direct sun. The embiids aggregate. We related these behaviors to their appar- in that study [Notoligotoma hardyi (Friederichs): No- ent reliance on silk in the Þeld. Our prediction was that toligotomidae] relied instead on internal heat-shock embiids living exposed on rock-faces or trees are more proteins and microhabitat choice (see also Edgerly dependent on silk, which serves as primary protection and Rooks 2004). In contrast, silken abodes of cater- against abiotic and biotic threats. These species should pillars do play a signiÞcant role in behavioral thermo- regulation, offering warmth or shade depending on spin more and aggregate more than the leaf-litter where the larvae sit in their three-dimensional tents dweller, which should be less reliant on silk which (Carlberg 1980, Joos et al. 1988, Fitzgerald and Un- functions more as stitching than as primary cover. derwood 2000). Reliance on silk is fundamental to embiids, an order of Ϸ2,000 species, many still undescribed (Ross 2000). Materials and Methods Individuals of all ages and both sexes spin with their front tarsi by releasing numerous strands as their silk Laboratory Cultures and General Methods. Embi- Њ ejectors touch the substratum (Edgerly et al. 2002). ids were reared at Santa Clara University at 27 C with Females are wingless, elongate, ßexible, and juvenile 12 h of overhead ßuorescent lighting each day. A. in form, traits that are well suited to life in narrow silk urichi and A. incompta fed on romaine lettuce and passages. The few detailed behavioral studies show lived in a mulch of dead oak leaves, typical rearing that adult females contribute the most silk to the medium for embiids (Ross 2000), whereas N. hardyi colony, and indeed, spinning silk is a key component would only feed on lichens scraped from oak bark. All of maternal care (Edgerly 1988). Adult males spin lichens and leaves were from local California Live Oak little silkÑin most species, they ßy off to mate and die (Quercus agrifolia). Adult females were used in all soon thereafter without feeding or contributing much experiments unless noted. Their mean weights ranged to the silk covering. The differential contributions to from 0.042 g for A. urichi (n ϭ 20) to 0.021 g for A. spinning made by males and females still needs study, incompta (n ϭ 14), and 0.012 g for N. hardyi (n ϭ 20). especially for those species where males are wingless Body length follows the same relationship: A. urichi at and more likely to spend time in silk galleries, partic- 1.60 Ϯ 0.02 cm (Edgerly 1987a), A. incompta at 1.18 Ϯ ularly true for embiids in arid environments.
Recommended publications
  • EFFECTS of COLONY SIZE on WEB STRUCTURE and BEHAVIOR of the SOCIAL SPIDE R MALLOS GREGALIS (ARANEAE, DICTYNIDAE)1 William James
    Tietjen, W. J. 1986 . Effects of colony size on web structure and behavior of the social spider Mallos gregalis (Araneae, Dictynidae) . J. Arachnol ., 14 :145-157 . EFFECTS OF COLONY SIZE ON WEB STRUCTURE AND BEHAVIOR OF THE SOCIAL SPIDE R MALLOS GREGALIS (ARANEAE, DICTYNIDAE) 1 William James Tietjen Department of Biolog y Lindenwood College Saint Charles, Missouri 63301 U .S.A . ABSTRACT Groups of size 1, 2, 5, 10 and 20 Mallos gregalis were monitored under laboratory conditions wit h the aid of a computer-controlled digital camera . Data collected included a measure of the density an d complexity of the silk comprising the nest, as well as activity levels and occupation of space withi n experimental arenas . Average web density and complexity was related to colony size, with the larger colonies building more complex nests . I suggest that the greater web complexity would allow larger colonies greate r opportunities for the exploitation of marginal habitats . The webs built by the two smaller groupings were similar to those built by solitary dictynids and indicated that M. gregalis may be a facultatively - social spider . An estimate of mean silk deposition per spider indicated that members of the large r colonies exerted less effort in web construction than spiders in the two smaller groupings . Colony activity was related to group size and exhibited evidence for a group effect in the patternin g of activity bouts . It is possible that this would aid in coordinating colony behavior . Measures of both web structure and colony activity indicated that the changes in colony behavior were not due to a simple arithmetic effect (e .g., size 20 colonies were neither twice as active nor were their webs twic e as complex as colonies of size 10) .
    [Show full text]
  • Spiders and the Cobwebs of Myth About Them
    Spiders and the Cobwebs of Myth about Them Number 31 August 1, 1983 LayPeople often wonder why their tax spiders, could find “no obvious justifica- dollars should support science that tion for so dkproportionate, so wide- seems to have no relevance to everyday spread, so illogical a horror, which may problems. Why, for example, should welf have been an obstacle to serious they give money to people to study arachnology. ”1 Savory believed that the spiders or scorpions? What makes fear of spiders is complex and no single arachnology, the study of these crea- explanation can cover all cases. Like tures, relevant? The importance of many other phobias, however, it can arachnology became apparent to me often be traced to early chfldhood. Per- many years ago. As I lay on a mound haps a chdd, warned about poisonous during an Army maneuver in Texas, I and ferocious animals, transferred the felt a shooting pain move down my left fear to spiders. Or maybe the child was arm toward my chest. I thought I was once frightened by a spider. As Savory having a heart attack. It turned out to be notes, “Few creatures are more likely a scorpion sting. Many years later, I was than a house spider to appear unexpect- reminded of the relevance of arachnol- edly and give a shock to a child.”1 ogy while living on an asparagus farm Anthropologist Marvin Harris, Uni- with my son in New Jersey. A small child versit y of Florida, Gainesville, agrees was bitten by a black widow spider in an that the fear is learned in childhood.
    [Show full text]
  • Does the Web of the Social Spider Mallos Gregalis (Araneae
    Bull.Br.aiachnoLSoc. (1980) 5 (2), 91-94 91 Does the web of the social spider Mallos observations on M. gregalis in its natural habitats were gregalis (Araneae: Dictynidae) attract flies? those of Diguet (1909a, b, 1915), carried out in the mountains of Michoacan. He reported that the people Robert R. Jackson living in these regions employed the webs of M. North Carolina Mehtal Health Research, gregalis, which they called “el mosquero”, as fly traps Raleigh, North Carolina, U.S.A.* around their homes. Diguet, as well as later writers (Berland, 1928; Gertsch, 1949; Burgess & Witt, 1976), emphasised the phenomenal capacity of these Introduction webs to capture flies, and this species was introduced Insect species frequently locate mates, food and to France as a potential biological control agent for oviposition sites by means of olfactory stimuli. A flies (Berland, 1913; Semichon, 1910). potential predatory tactic of spiders is to attract their Diguet reported carrying out a simple experiment insect prey by chemical mimicry of the mates, food in which he placed a paper envelope over a web of M. or oviposition sites of the prey species. Eberhard gregalis. Flies landed on this paper in great abund­ (1977) recently provided evidence for use of this ance, but relatively few landed on paper placed else­ tactic by a neotropical bolas spider, and similar where. His conclusion that the web of M. gregalis behaviour has been suggested for several other species attracts flies is still quoted half a century later. How­ (McKeown, 1963; Forster & Forster, 1973; Horton, ever, it is difficult to evaluate this experiment since 1979).
    [Show full text]
  • The Spinning Apparatus of Webspinners – Functional-Morphology, Morphometrics and Spinning Behaviour
    OPEN The spinning apparatus of webspinners – SUBJECT AREAS: functional-morphology, morphometrics ENTOMOLOGY ANIMAL BEHAVIOUR and spinning behaviour Sebastian Bu¨sse1, Thomas Ho¨rnschemeyer2, Kyle Hohu3, David McMillan3 & Janice S. Edgerly3 Received 25 September 2014 1University Museum of Zoology, Department of Zoology, University of Cambridge, Cambridge, UK, Accepted 2Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Department of Morphology, Systematic and Evolutionary 3 20 March 2015 Biology, Georg-August-University Go¨ttingen, Go¨ttingen, Germany, Department of Biology, Santa Clara University, Santa Clara, CA, USA. Published 7 May 2015 Webspinners (Insecta: Embioptera) have a distinctly unique behaviour with related morphological characteristics. Producing silk with the basitarsomeres of their forelegs plays a crucial role in the lives of these insects – providing shelter and protection. The correlation between body size, morphology and Correspondence and morphometrics of the spinning apparatus and the spinning behaviour of Embioptera was investigated for requests for materials seven species using state-of-the-art methodology for behavioural as well as for morphological approaches. should be addressed to Independent contrast analysis revealed correlations between morphometric characters and body size. Larger S.B. (sbuesse@gwdg. webspinners in this study have glands with greater reservoir volume, but in proportionally smaller tarsi relative to body size than in the smaller species. Furthermore, we present a detailed description and review of de) the spinning apparatus in Embioptera in comparison to other arthropods and substantiate the possible homology of the embiopteran silk glands to class III dermal silk glands of insects. n spiders (Arachnida: Araneae) silk production is well known and well studied. In this group silk is vital in nearly all biological contexts.
    [Show full text]
  • Phylogenetic Systematics of Archembiidae (Embiidina, Insecta)
    Systematic Entomology (2004) 29, 215–237 Phylogenetic systematics of Archembiidae (Embiidina, Insecta) CLAUDIA A. SZUMIK CONICET – Instituto Superior de Entomologia ‘Dr Abraham Willink’, Miguel Lillo 205, C.P. 4000, San Miguel de Tucuman, Tucuman, Argentina Abstract. A cladistic analysis of the American genera of Embiidae is presented, using fifty-seven representative taxa and ninety-four morphological characters. The results support the elevation (and significant re-delimitation) of the sub- family Archembiinae to family level; as delimited here, Archembiidae, revised status, includes the genera Ecuadembia n.gen., Calamoclostes Enderlein, Arche- mbia Ross, Embolyntha Davis, Xiphosembia Ross, Ochrembia Ross, Dolonem- bia Ross, Conicercembia Ross, Neorhagadochir Ross, Pachylembia Ross, Rhagadochir Enderlein, Litosembia Ross, Navasiella Davis, Ambonembia Ross, Malacosembia Ross, Biguembia Szumik, Gibocercus Szumik and Para- rhagadochir Davis. The results also indicate that some genera recently proposed are unjustified and therefore they are synonymized: Argocercembia Ross (a junior synonym of Embolyntha), Brachypterembia Ross (Neorhagadochir), Sce- lembia Ross (Rhagadochir), Ischnosembia Ross (Ambonembia)andAphanembia Ross (Biguembia); all new synonymy. The new genus Ecuadembia is described (type species Archembia arida Ross). Ischnosembia surinamensis (Ross) is returned to the genus Pararhagadochir. The following species synonymies are established: Archembia lacombea Ross 1971 ¼ Archembia kotzbaueri (Navas 1925), Archembia peruviana Ross 2001 ¼ Archembia batesi (MacLachlan 1877), and Conicercembia septentrionalis (Marin˜ o&Ma´ rquez 1988) ¼ Conicercembia tepicensis Ross 1984; all new synonymy. The family Archembiidae, and all its constituent genera, are diagnosed and described. The genus Microembia Ross (originally described as an Embiidae) is transferred to Anisembiidae. Pachylembiinae, Scelembiinae, and Microembiinae proposed by Ross are unsupported by the present cladistic analysis.1 Correspondence: Claudia A.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2017.1 Andrew J. Ross 28/02/2017 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of 2016. It does not contain unpublished records or records from papers in press (including on-line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. The list comprises 31 classes (or similar rank), 85 orders (or similar rank), 375 families, 530 genera and 643 species. This includes 6 classes, 54 orders, 342 families, 482 genera and 591 species of arthropods. Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2018.1 Andrew J. Ross 15/05/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of April 2018. It does not contain unpublished records or records from papers in press (including on- line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.4) are marked in blue, corrections are marked in red. The list comprises 37 classes (or similar rank), 99 orders (or similar rank), 510 families, 713 genera and 916 species. This includes 8 classes, 64 orders, 467 families, 656 genera and 849 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Characterization and Evolutionary Analyses of Silk Fibroins from Two Insect Orders: Embioptera and Lepidoptera Permalink https://escholarship.org/uc/item/0jg8m909 Author Collin, Matthew Aric Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Characterization and Evolutionary Analyses of Silk Fibroins From Two Insect Orders: Embioptera and Lepidoptera A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Genetics, Genomics and Bioinformatics by Matthew Aric Collin June 2010 Dissertation Committee: Dr. Cheryl Y. Hayashi, Chairperson Dr. David N. Reznick Dr. Julia N. Bailey-Serres Copyright by Matthew Aric Collin 2010 The Dissertation of Matthew Aric Collin is approved: _______________________________________________________________ _______________________________________________________________ _______________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements The text of this dissertation, in part or in full, is a reprint of the material as it appears in Insect Biochemistry and Molecular Biology, February 2009, and Biomacromolecules, August 2009. Co-author Edina Camama listed in the Biomacromolecules publication provided research assistance. Co-author Janice S. Edgerly listed in those publications provided embiopteran cultures
    [Show full text]
  • The Evolution of Sociality in Spiders
    ADVANCES IN THE STUDY OF BEHAVIOR, VOL. 37 The Evolution of Sociality in Spiders { Yael Lubin* and Trine Bilde *blaustein institutes for desert research, ben‐gurion university of the negev, sede boqer campus, 84990 israel {department of biological sciences, university of aarhus, denmark I. INTRODUCING SOCIAL SPIDERS A solitary lifestyle characterizes the vast majority of almost 40,000 known species of spiders (Platnick, 2007). Thus, the occurrence of group living in spiders begs the question: what is different about these species? Group living has arisen in spiders in basically two different forms. Cooperative or ‘‘non- territorial permanent‐social’’ species (sensu Avile´s, 1997;alsoreferredtoas ‘‘quasi‐social,’’ Buskirk, 1981) are the main focus of this chapter. These species have family‐group territories consisting of communal nests and cap- ture webs, which they inhabit throughout the entire lifetime of the individual, and colony members cooperate in foraging and raising young. In many ways, these species resemble the ‘‘primitively eusocial’’ wasps and bees and the cooperative breeders in vertebrate societies, where the family forms the basic unit of sociality (Brockmann, 1997; Whitehouse and Lubin, 2005). Another form of group living in spiders has been termed colonial or communal‐ territorial (Avile´s, 1997: ‘‘territorial permanent‐social’’ species). Colonial species occur in aggregations, but individuals in the colony generally forage and feed alone and there is no maternal care beyond the egg stage; thus, they lack the cooperative behaviors described below for nonterritorial permanent‐ social species (reviewed in Uetz and Hieber, 1997; Whitehouse and Lubin, 2005). Colonial species have been likened to foraging flocks of birds (Rypstra, 1979) and are described as ‘‘foraging societies’’ by Whitehouse and Lubin (2005).
    [Show full text]
  • The Duration of Copulation in Spiders: Comparative Patterns
    Records of the Western Australian Museum Supplement No. 52: 1-11 (1995). The duration of copulation in spiders: comparative patterns Mark A. Elgar Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia Abstract - The duration of copulation in spiders varies both-within and between species, and in the latter by several orders of magnitude. The sources of this variation are explored in comparative analyses of the duration of copulation and other life-history variables of 135 species of spiders from 26 families. The duration of copulation is correlated with body size within several species, but the pattern is not consistent and more generally there is no inter-specific covariation between these variables. The duration of copulation within orb-weaving spiders is associated with both the location of mating and the frequency of sexual cannibalism, suggesting that the length of copulation is limited by the risk of predation. Finally, entelegyne spiders copulate for longer than haplogyne spiders, a pattern that can be interpreted in terms of male mating strategies or the complexity of their copulatory apparatus. INTRODUCTION after the copulatory organ has been inserted. In It is widely recognised that there are conflicts of species in which females mate with several males, interest between males and females in the choice of copulation may provide the male with the mating partner and the frequency of mating (e.g. opportunity to manipulate the sperm of other Elgar 1992). Thus, while the principal function of males that previously mated with that female. For copulation is to transfer gametes, the act of mating example, copulating male damselflies not only may have several additional functions, such as transfer their own sperm, but also remove the mate assessment or ensuring sperm priority, and sperm of rival males (e.g.
    [Show full text]
  • Anthropod Community Associated with the Webs of the Subsocial Spider Anelosimus Studiosus
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2008 Anthropod Community Associated with the Webs of the Subsocial Spider Anelosimus Studiosus Sarah Natalie Mock Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Mock, Sarah Natalie, "Anthropod Community Associated with the Webs of the Subsocial Spider Anelosimus Studiosus" (2008). Electronic Theses and Dissertations. 702. https://digitalcommons.georgiasouthern.edu/etd/702 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. THE ARTHROPOD COMMUNITY ASSOCIATED WITH THE WEBS OF THE SUBSOCIAL SPIDER ANELOSIMUS STUDIOSUS by SARAH N. MOCK (Under the Direction of Alan Harvey) ABSTRACT Anelosimus studiosus (Theridiidae) is a subsocial spider that has a diverse arthropod fauna associated with its webs. From south Georgia, I identified 1006 arthropods representing 105 species living with A. studiosus , and 40 species that were prey items from 250 webs. The arthropods seen in A. studiosus webs represented a distinct community from the arthropods on the tree. I found that Barronopsis barrowsi (Agelenidae) and Frontinella pyramitela was similar to A. studiosus in web structure and that B. barrowsi webs contained multiple arthropods. Also, previously known as asocial, B. barrowsi demonstrated sociality in having multiple adults per web. Lastly, the inquiline communities in the webs of A.studiosus and B.barronopsis contained many different feeding guilds, including herbivores, omnivores, generalist predators, kleptoparasites, and aranievores.
    [Show full text]
  • A Comprehensive Understanding of Corpse Management in Termites
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2015 A Comprehensive Understanding of Corpse Management in Termites Qian Sun University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Sun, Qian, "A Comprehensive Understanding of Corpse Management in Termites" (2015). Theses and Dissertations--Entomology. 23. https://uknowledge.uky.edu/entomology_etds/23 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work.
    [Show full text]