Mutualism Between Self‑Splicing Introns and Their Hosts

Total Page:16

File Type:pdf, Size:1020Kb

Mutualism Between Self‑Splicing Introns and Their Hosts www.biomedcentral.com/bmcbiol U A A A U U A - U P9.1 G - C G - C U - G P9.2 A U U A C A C A U G C A G G G G U A A G G - - - - - - - A - - - - - - - U C U A U U C U G U A C G U C G C G C G P9 A A A 3’ C A P12 exon2 P9.0a A G U td c U U U C U U c A C G A A - U 60 A G a A P9.0b G U A P10 u G - C P5 A A U G - C U - G c A - U A - U 5’SS G - U - C - G C C u G AC P7.2 C P1 g - C 10 C - G U - G 70 A A g - C 3’SS U - A P7 C - G A A g G - C G A U - G u A - U A - U C - G exon1 U - A A G td U P4 C - G A A C - G UA G - C C U U - A A C C - G 5’ IMAGEA C - G C - G P7.1 U - A C - G G - A P6 C G A - U U G C - A U P3 G U - A U U 80 U U A C - G A A U - G U A A U - A A A G - U G A A 860 A - U U U G - C G - C U - A U - A U - A U - A G - C A - U P2 G - C P8 P6a U - A U - A A - U A - U A - U A - U G - C 20 A - U C - G 90 G - U G - C A C A - U G A A U C - G U G U - G 850 U U F I-TevI OR Learning to live together: mutualism between self‑splicing introns and their hosts David Edgell, Venkata R Chalamcharla & Marlene Belfort Editorial Office BMC Biology BioMed Central Ltd Floor 6, 236 Gray’s Inn Road London WC1X 8HB United Kingdom Tel: +44 (0) 20 3192 2000 Fax: +44 (0) 20 3192 2011 Email: [email protected] Editor: Miranda Robertson Deputy Editors: Penelope Austin, Ann Le Good Assistant Editor: Kester Jarvis Editorial Assistant: Alice Plane Senior Journal Development Editor: Ciaran O’Neill Editorial Administrators: Gaby Anderson, Vikki Bean Production Manager: Caroline Hering Production staff: Eddy Baker, Rahila Esposito, Ross Hopkins Editorial Board Michael Adams (USA) Susan Gasser (Switzerland) Julian Lewis (UK) Paolo Sassone-Corsi (USA) John Aitchison (Canada) Ronald N Germain (USA) Tomas Lindahl (UK) Alexander Schier (USA) Michael Akam (UK) Dave Goeddel (USA) Andrew Lumsden (UK) Dirk Schübeler (Switzerland) Richard W Aldrich (USA) Joseph L Goldstein (USA) Nancy Maizels (USA) Frank Slack (USA) Brenda J Andrews (Canada) Corey Goodman (USA) James L Manley (USA) Lukas Sommer (Switzerland) John Archibald (Canada) Douglas Green (USA) Philippa Marrack (USA) Ralf Sommer (Germany) Michael Ashburner (UK) Rachel Green (USA) Mark Marsh (UK) Nahum Sonenberg (Canada) Naama Barkai (Israel) Gillian Griffiths (UK) Bruce J Mayer (USA) Stephen R Sprang (USA) Konrad Basler (Switzerland) James Gusella (USA) Malcolm McConville (Australia) David L Stern (USA) David Baulcombe (UK) Stephen Harrison (USA) Jacopo Meldolesi (Italy) Paul Sternberg (USA) Stephen J Benkovic (USA) Richard Henderson (UK) Elliot Meyerowitz (USA) Charles F Stevens (USA) William Bentley (USA) Michael O Hengartner Christopher Miller (USA) Brigitta Stockinger (UK) Sally Blower (USA) (Switzerland) Danesh Moazed (USA) Kevin Struhl (USA) John Brookfield (UK) Rolf Hilgenfeld (Germany) Cesare Montecucco (Italy) Michael P Stryker (USA) Michael Brown (USA) Toshio Hirano (Japan) Dino Moras (France) Masatoshi Takeichi (Japan) Patrick O Brown (USA) Hermann-Georg Holzhütter David O Morgan (USA) Guenter Theissen (Germany) Anne Calof (USA) (Germany) Keith E Mostov (USA) Julie A Theriot (USA) George M Church (USA) H Robert Horvitz (USA) Sean Munro (UK) Masaru Tomita (Japan) James E Cleaver (USA) Jonathan Howard (Germany) Shuh Narumiya (Japan) Mathias Uhlen (Sweden) Philip T Cohen (UK) Tim Hunt (UK) Claus Nielsen (Denmark) Frank Uhlmann (UK) Philip A Cole (USA) Laurence D Hurst (UK) Brian Oliver (USA) Gijsbertus T.J. van der Horst Martha Constantine-Paton Philip W Ingham (Singapore) Zoltan Oltvai (USA) (Netherlands) (USA) Paul Insel (USA) Jan Pawlowski (Switzerland) Ulrich H von Andrian (USA) Roland Contreras (Belgium) Nancy Ip (China) Tony Pawson (Canada) Leslie B Vosshall (USA) Nancy L Craig (USA) Thomas Jessell (USA) Gregory A Petsko (USA) Virginia Walbot (USA) Antoine Danchin (France) Alexander Johnson (USA) Gerd Pfeifer (USA) Peter Walter (USA) Ivan Dikic (Germany) Cynthia Kenyon (USA) David Pimentel (USA) James L Weber (USA) Richard Durbin (UK) Alan R Kimmel (USA) Mu-ming Poo (USA) Robin A Weiss (UK) Dieter Ebert (Switzerland) Mary-Claire King (USA) Martin Raff (UK) Jonathan S Weissman (USA) Michael B Eisen (USA) Marc Kirschner (USA) Dagmar Ringe (USA) James Wells (USA) Adrian Elcock (USA) Eugene Koonin (USA) John Rossi (USA) Jamie Williamson (USA) Sarah C Elgin (USA) Anders Krogh (Denmark) Steven Salzberg (USA) Bruce R Zetter (USA) James Ferrell (USA) Angus I Lamond (UK) Joshua R. Sanes (USA) Michael Zhang (USA) Wolf B. Frommer (USA) Arthur D Lander (USA) Carmen Sapienza (USA) Arturo Zychlinsky (Germany) Edgell DR et al. BMC Biology 2011, 9:22 http://www.biomedcentral.com/1741-7007/9/22 review Open Access Learning to live together: mutualism between self‑splicing introns and their hosts David R Edgell1*, Venkata R Chalamcharla2,3 and Marlene Belfort2* Abstract data argue that the relationship is more elaborate than previously appreciated. Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural Mobile introns: ribozymes with baggage RNA genes in all domains of life. They function as self- One group of mobile genetic elements comprises the group I splicing ribozymes and thereby limit the phenotypic and II introns. These sequences interrupt protein-coding and costs associated with disruption of a host gene while structural RNA genes in all domains of life and can be con­ they act as mobile DNA elements to promote their sidered as molecular parasites. When the gene is trans­cribed spread within and between genomes. Once considered into RNA, the intron sequence acts as a ribozyme (an RNA purely selfish DNA elements, they now seem, in the with enzymatic activity), which removes the intron sequence light of recent work on the molecular mechanisms from the primary RNA transcript, thus limiting the regulating bacterial and phage group I and II intron phenotypic cost associated with insertion of the element into dynamics, to show evidence of co-evolution with their a host gene and promoting their maintenance in the genome. hosts. These previously underappreciated relationships In the case of group I and II introns, the host-parasite serve the co-evolving entities particularly well in times relationship is enriched by the fact that the introns of environmental stress. themselves have been invaded by smaller parasitic elements – genes that encode mobility-promoting activities that enable the DNA element to move within and between One of the most intricate relationships in biology is that genomes [10]. Thus, at least two levels of parasitism exist for between a host and a parasite. Almost all organisms mobile introns: the intron in the host gene it interrupts, and studied so far harbor mobile genetic elements and/or the invading gene in the intron. Collectively, the intron and their derivatives. At the genomic level, the traditional its encoded mobility protein (often termed an intron- view of mobile elements is that they provide seemingly encoded protein, IEP) collaborate to form a composite little or no benefit to the host while parasitizing the host’s mobile element that utilizes host DNA replication, recombi­ cellular machinery to promote element mobility through nation and repair pathways to spread [11], while the ribozyme complex molecular pathways [1,2]. The host’s response to activity ensures that it does not disrupt the function of genes these elements is primarily defensive, as evidenced by the into which it is inserted. Accordingly, it has become evident many forms of negative regulation that downregulate the that there is an extraordinary degree of co-evolution among activity of mobile elements [3-8]. The persistence of a IEPs, the introns that house them, and the host organism. mobile element in a given population is thus the result of This review highlights several recent studies probing the a delicate balance between an excessive mutational interplay among self-splicing introns in bacterial and phage burden on the host caused by the element’s unrestricted genomes, their genes, and their bacterial and phage hosts. activity, and excessive negative regulation imposed by the host on the element to limit mobility. While the Group I introns relationship between host and mobile element is often Group I introns commonly inhabit bacterial, organellar, viewed as a molecular arms race [9], recent experimental bacteriophage and viral genomes, and the ribosomal RNA genes (rDNA) of eukaryotes, and produce a self- splicing RNA [12]. Group II introns have a similar *Correspondence: [email protected], [email protected] 1Department of Biochemistry, Schulich School of Medicine and Dentistry, distribution, except that they are not found in eukaryotic The University of Western Ontario, London, Ontario, Canada N6A 5C1 nuclear genes. Group I and group II introns show little Full list of author information is available at the end of the article primary sequence conservation, yet their RNAs each © 2010 Author et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Recommended publications
  • Establishment of Sister Chromatid Cohesion During Dna Replication in Saccharomyces Cerevisiae
    ESTABLISHMENT OF SISTER CHROMATID COHESION DURING DNA REPLICATION IN SACCHAROMYCES CEREVISIAE Vanessa de Sousa Ferreira Borges Thesis submitted for the degree of Doctor of Philosophy to University College London Supervisor: Dr. Frank Uhlmann September 2012 Chromosome Segregation Laboratory Cancer Research UK, London Research Institute 44 Lincoln’s Inn Fields London WC2A 3LY United Kingdom Declaration I, Vanessa de Sousa Ferreira Borges, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Acknowledgements One day scientific research became part of me, a world of puzzles, challenges and open questions waiting to be answered. Four years ago this decision brought me to London to do my PhD and many people became part of this exciting adventure and helped me through it in so many different ways. For this I would like to thank… …My supervisor Frank Uhlmann, for his continuous support, guidance and excellent scientific advice throughout the last 4 years. For always having the door of his office opened and time to discuss important or trivial questions about my project. For his contagious enthusiasm about science and for everything he taught me during my PhD. For being a great supervisor. …Everyone in the Chromosome and Segregation Laboratory for a very stimulating working environment and for making it such a nice place to work. I would like to thank Maria for all her help around the lab, Sebastian who taught me a lot in the beginning of my PhD, Adrian, Thomas, Celine, Molly, Rahul, Sandra, Lesia, Yasuto and Yasu.
    [Show full text]
  • Mating Patterns in a Hybrid Zone of Fire-Bellied Toads
    Heredity (2005) 94, 247–257 & 2005 Nature Publishing Group All rights reserved 0018-067X/05 $30.00 www.nature.com/hdy Mating patterns in a hybrid zone of fire-bellied toads (Bombina): inferences from adult and full-sib genotypes BNu¨ rnberger1, NH Barton2, LEB Kruuk2 and TH Vines1,2,3 1Department Biologie II, Ludwig-Maximilians-Universita¨tMu¨nchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany; 2Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland We present two novel methods to infer mating patterns from The second approach is based solely on the offspring genetic data. They differ from existing statistical methods of genotypes and relies on the fact that a linear relation exists parentage inference in that they apply to populations that between associations among the offspring and those in the deviate from Hardy–Weinberg and linkage equilibrium, and population of breeding pairs. We apply both methods to a so are suited for the study of assortative mating in hybrid sample from the hybrid zone between the fire-bellied toads zones. The core data set consists of genotypes at several Bombina bombina and B. variegata (Anura: Disco glossidae) loci for a number of full-sib clutches of unknown parentage. in Croatia. Consistently, both approaches provide no Our inference is based throughout on estimates of allelic evidence for a departure from random mating, despite associations within and across loci, such as heterozygote adequate statistical power. Instead, B. variegata-like indivi- deficit and pairwise linkage disequilibrium. In the first duals among the adults contributed disproportionately to the method, the most likely parents of a given clutch are offspring cohort, consistent with their preference for the type determined from the genotypic distribution of the associated of breeding habitat in which this study was conducted.
    [Show full text]
  • SMC Complexes Orchestrate the Mitotic Chromatin Interaction Landscape
    Curr Genet DOI 10.1007/s00294-017-0755-y REVIEW SMC complexes orchestrate the mitotic chromatin interaction landscape Yasutaka Kakui1 · Frank Uhlmann1 Received: 13 September 2017 / Revised: 14 September 2017 / Accepted: 16 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Chromatin is a very long DNA–protein complex Keywords Chromosome condensation · SMC complex · that controls the expression and inheritance of the genetic Chromatin · Cell cycle · Hi-C information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes dur- ing mitosis. This process, known as chromosome condensa- Introduction tion, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of How chromatin is spatially organized within the cell nucleus the structural maintenance of chromosomes (SMC) fam- and within chromosomes is a fundamental question in cell ily, are fundamental for chromosome architecture, both biology. Centimeter-long DNA molecules change their spa- for establishment of chromatin structure in the interphase tial chromatin organization within micrometer-sized cells nucleus and for the formation of condensed chromosomes during cell cycle progression. In interphase, chromatin is in mitosis. These ring-shaped SMC complexes are thought distributed throughout the nucleus to express the genetic to regulate the interactions between DNA strands by topo- information. When cells enter mitosis, chromatin becomes logically entrapping DNA. How this activity shapes chro- compacted to form mitotic chromosomes. Chromosome mosomes is not yet understood. Recent high throughput condensation, the gross morphological change of spatial chromosome conformation capture studies revealed how chromatin organization in mitosis, is indispensable for chromatin is reorganized during the cell cycle and have the faithful inheritance of genetic information.
    [Show full text]
  • 3718 Issue63july2010 1.Pdf
    Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 1 JULYJULLYY 2010 | ISSUEISSUE 63 GENETICSGENNETICSS SOCIETYSOCIEETY NENEWSEWS In this issue The Genetics Society NewsNewws is edited by U Genetics Society PresidentPresident Honoured Honoured ProfProf David Hosken and items ittems for future future issues can be sent to thee editor,editor, preferably preferably U Mouse Genetics Meeting by email to [email protected],D.J.Hosken@@exeter.ac.uk, or U SponsoredSponsored Meetings Meetings hardhard copy to Chair in Evolutionary Evoolutionary Biology, Biology, UniversityUniversity of Exeter,Exeter, Cornwall Cornnwall Campus, U The JBS Haldane LectureLecture Tremough,Tremough, Penryn, TR10 0 9EZ UK.UK. The U Schools Evolutionn ConferenceConference Newsletter is published twicet a year,year, with copy dates of 1st June andand 26th November.November. U TaxiTaxi Drivers The British YeastYeaste Group Group descend on Oxford Oxford for their 2010 meeting: m see the reportreport on page 35. 3 Image © Georgina McLoughlin Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 2 A WORD FROM THE EDITOR A word from the editor Welcome to issue 63. In this issue we announce a UK is recognised with the award of a CBE in the new Genetics Society Prize to Queen’s Birthday Honours, tells us about one of Welcome to my last issue as join the medals and lectures we her favourite papers by Susan Lindquist, the 2010 editor of the Genetics Society award. The JBS Haldane Mendel Lecturer. Somewhat unusually we have a News, after 3 years in the hot Lecture will be awarded couple of Taxi Drivers in this issue – Brian and seat and a total of 8 years on annually to recognise Deborah Charlesworth are not so happy about the committee it is time to excellence in communicating the way that the print media deals with some move on before I really outstay aspects of genetics research to scientific issues and Chris Ponting bemoans the my welcome! It has been a the public.
    [Show full text]
  • DNA Evidence: Probability, Population Genetics, and the Courts David H
    Penn State Law eLibrary Journal Articles Faculty Works 1993 DNA Evidence: Probability, Population Genetics, and the Courts David H. Kaye Penn State Law Follow this and additional works at: http://elibrary.law.psu.edu/fac_works Part of the Criminal Law Commons, Evidence Commons, and the Science and Technology Law Commons Recommended Citation David H. Kaye, DNA Evidence: Probability, Population Genetics, and the Courts, 7 Harv. J.L. & Tech. 101 (1993). This Article is brought to you for free and open access by the Faculty Works at Penn State Law eLibrary. It has been accepted for inclusion in Journal Articles by an authorized administrator of Penn State Law eLibrary. For more information, please contact [email protected]. Volume 7, Fall Issue, 1993 DNA EVIDENCE: PROBABILITY, POPULATION GENETICS, AND THE COURTS David H. Kaye* INTRODUCTION Courts, attorneys, scientists, statisticians, journalists, and government 4 agencies have been explaining,' examining, 2 promoting,3 proselytizing, denigrating,5 and otherwise struggling with DNA identification evidence at least since 1985.6 In the first wave of cases, expert testimony for the * Regents' Professor, Arizona State University College of Law, Box 877906, Tempe, AZ 85287-7906 (602 965-2922, [email protected]). A version of this paper was presented at the 1992 Joint Statistical Meetings of the American Statistical Association, the Biometric Society, and the Institute of Mathematical Statistics. I am grateful to Herman Cheroff for comments on that paper and to Colin Aitken, Richard Lempert, Bruce Weir, and especially Bernard Devlin for comments on later drafts. The errors that remain despite this guidance are entirely my own.
    [Show full text]
  • EMBO Facts & Figures
    excellence in life sciences Reykjavik Helsinki Oslo Stockholm Tallinn EMBO facts & figures & EMBO facts Copenhagen Dublin Amsterdam Berlin Warsaw London Brussels Prague Luxembourg Paris Vienna Bratislava Budapest Bern Ljubljana Zagreb Rome Madrid Ankara Lisbon Athens Jerusalem EMBO facts & figures HIGHLIGHTS CONTACT EMBO & EMBC EMBO Long-Term Fellowships Five Advanced Fellows are selected (page ). Long-Term and Short-Term Fellowships are awarded. The Fellows’ EMBO Young Investigators Meeting is held in Heidelberg in June . EMBO Installation Grants New EMBO Members & EMBO elects new members (page ), selects Young EMBO Women in Science Young Investigators Investigators (page ) and eight Installation Grantees Gerlind Wallon EMBO Scientific Publications (page ). Programme Manager Bernd Pulverer S Maria Leptin Deputy Director Head A EMBO Science Policy Issues report on quotas in academia to assure gender balance. R EMBO Director + + A Conducts workshops on emerging biotechnologies and on H T cognitive genomics. Gives invited talks at US National Academy E IC of Sciences, International Summit on Human Genome Editing, I H 5 D MAN 201 O N Washington, DC.; World Congress on Research Integrity, Rio de A M Janeiro; International Scienti c Advisory Board for the Centre for Eilish Craddock IT 2 015 Mammalian Synthetic Biology, Edinburgh. Personal Assistant to EMBO Fellowships EMBO Scientific Publications EMBO Gold Medal Sarah Teichmann and Ido Amit receive the EMBO Gold the EMBO Director David del Álamo Thomas Lemberger Medal (page ). + Programme Manager Deputy Head EMBO Global Activities India and Singapore sign agreements to become EMBC Associate + + Member States. EMBO Courses & Workshops More than , participants from countries attend 6th scienti c events (page ); participants attend EMBO Laboratory Management Courses (page ); rst online course EMBO Courses & Workshops recorded in collaboration with iBiology.
    [Show full text]
  • Evolution Is a Quantitative Science
    Book Review/Science in the Media Evolution Is a Quantitative Science John F. Y. Brookfield* Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom Evolutionary genetics is a mature field ing in evolutionary genetics must be of endeavour, and some of biology’s included in all bioinformatics and geno- greatest minds have contributed to the mics courses. Educators will find that theory of population genetics. Initially, foundation in Elements of Evolutionary Genet- they faced a problem, in that following the ics, by Brian and Deborah Charlesworth. rediscovery of Mendel’s results in the early This thorough and accurate textbook years of the 20th century, some saw an represents a remarkable achievement. The unbridgeable gulf between the sudden rigour of the approach is impeccable changes in appearance seen in the mutant throughout, and the text makes clear just forms of peas studied by Mendel, and the how many areas of biology, such as sex, gradual and subtle changes to evolving genome structure, migration and popula- populations envisaged by Darwin. The so- tion variation, and adaptive evolution called Neo-Darwinian synthesis linked itself, can be understood only through these ideas by considering the likely effect the application of formal models in which of Darwinian natural selection on varia- evolutionary processes are considered in a tions in Mendelian genes, variations which precise way. Most telling, however, is the would not necessarily have major effects consistently quantitative approach to data on organisms’ phenotypes. Unusually, for and their interpretation. While a full biology, this theory was developed, pri- appreciation of the book will require some marily by Fisher, Haldane and Wright, mathematical understanding, the steps prior to the existence of data sets to which required are clearly dealt with in appen- it could realistically be applied.
    [Show full text]
  • Pp2acdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation
    Article PP2ACdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation Graphical Abstract Authors Molly Godfrey, Sandra A. Touati, Meghna Kataria, Andrew Jones, Ambrosius P. Snijders, Frank Uhlmann Correspondence [email protected] In Brief The eukaryotic cell cycle comprises a robustly ordered series of phosphorylation events. Godfrey et al. show that the phosphatase PP2ACdc55 counteracts and thereby delays cell-cycle phosphorylation by cyclin-dependent kinase specifically on threonine, but not serine, phosphorylation sites. This reveals an ordering principle that might be also relevant in other signaling networks. Highlights d The phosphatase PP2ACdc55 counteracts Cdk phosphorylation during the cell cycle d It does so specifically on threonine, but not serine, phosphorylation sites d Consequently, threonine phosphorylation is a late event in the cell cycle d Thereby, PP2ACdc55 contributes to setting the timing of mitosis Godfrey et al., 2017, Molecular Cell 65, 393–402 February 2, 2017 ª 2016 The Author(s). Published by Elsevier Inc. http://dx.doi.org/10.1016/j.molcel.2016.12.018 Molecular Cell Article PP2ACdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation Molly Godfrey,1,3 Sandra A. Touati,1 Meghna Kataria,1 Andrew Jones,2 Ambrosius P. Snijders,2 and Frank Uhlmann1,4,* 1Chromosome Segregation Laboratory 2Mass Spectrometry Proteomics Science Technology Platform The Francis Crick Institute, London NW1 1AT, UK 3Present address: Developmental Biology Division, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands 4Lead Contact *Correspondence: [email protected] http://dx.doi.org/10.1016/j.molcel.2016.12.018 SUMMARY before mitosis, is not well understood.
    [Show full text]
  • Editor-In-Chief Professor Brian Charlesworth Editors Dr Joan
    RSBL_8_1_cover.qxd 1/12/12 12:14 PM Page 2 Editor-in-Chief GUIDANCE FOR AUTHORS Professor Brian Charlesworth Selection criteria Editors Categories The criteria for selection are scientific excellence, originality and Papers published in Biology Letters will be categorised by subject, Dr Joan Herbers interest across disciplines within biology. Papers are assessed by the which include Editorial Board for suitability before full peer-review. Their Dr Paul Sniegowski • animal behaviour • marine biology recommendations are passed to the Editor. The Editor is responsible Publishing Editor for all editorial decisions and he makes these decisions based on the • biomechanics • molecular evolution Charlotte Wray reports received from the referees and the Editorial Board. • community ecology • neurobiology • conservation biology • palaeontology Editorial Board Publishing format • pathogen biology Biology Letters are published regularly online and in bimonthly print • evolutionary biology Brian Charlesworth, Editor-in-Chief Alex Kacelnik School of Biological Sciences, University of Edinburgh Department of Zoology, Oxford University issues. Along with all Royal Society journals, we are committed to • phylogeny Joan Herbers, Editor Laurent Keller • evolutionary developmental Department of Evolution, Ecology and Organismal Biology, Ohio State University Department of Ecology and Evolution, University of Lausanne archiving and providing perpetual access. Although the printed biology Paul Sniegowski, Editor Nicole King • physiology Department of Biology, University of Pennsylvania Department of Molecular and Cell Biology, University of California, Berkeley version of Biology Letters is limited to 2500 words, there is the Tom Little • genome biology • population ecology Leticia Avilés Institute of Evolutionary Biology, University of Edinburgh Department of Zoology, University of British Columbia Martine Maan facility for Electronic Supplementary Material (ESM).
    [Show full text]
  • Trustees' Annual Report and Financial Statements 31 March 2016
    THE FRANCIS CRICK INSTITUTE LIMITED A COMPANY LIMITED BY SHARES TRUSTEES’ ANNUAL REPORT AND FINANCIAL STATEMENTS 31 MARCH 2016 Charity registration number: 1140062 Company registration number: 6885462 The Francis Crick Institute Accounts 2016 CONTENTS INSIDE THIS REPORT Trustees’ report (incorporating the Strategic report and Directors’ report) 1 Independent auditor’s report 12 Consolidated statement of financial activities 13 Balance sheets 14 Cash flow statements 15 Notes to the financial statements 16 1 TRUSTEES’ REPORT (INCORPORATING THE STRATEGIC REPORT AND DIRECTORS’ REPORT) The trustees present their annual directors’ report together with the consolidated financial statements for the charity and its subsidiary (together, ‘the Group’) for the year ended 31 March 2016, which are prepared to meet the requirements for a directors’ report and financial statements for Companies Act purposes. The financial statements comply with the Charities Act 2011, the Companies Act 2006, and the Statement of Recommended Practice applicable to charities preparing their accounts in accordance with the Financial Reporting Standard applicable in the UK (FRS102) effective 1 January 2015 (Charity SORP). The trustees’ report includes the additional content required of larger charities. REFERENCE AND ADMINISTRATIVE DETAILS The Francis Crick Institute Limited (‘the charity’, ‘the Institute’ or ‘the Crick) is registered with the Charity Commission, charity number 1140062. The charity has operated and continues to operate under the name of the Francis Crick
    [Show full text]
  • Genetics Society News
    JULY 2012 | ISSUE 67 GENETICS SOCIETY NEWS In this issue The Genetics Society News is edited • New Honorary Members by David Hosken and items for future • Punnett’s Square issues can be sent to the editor, by email to [email protected]. • Meetings The Newsletter is published twice a • Summer Student and Travel Reports year, with copy dates of 1st June and 26th November. Collecting saltwater samples in the Dead Sea, part of a fieldwork grant. See page 39 A WORD FROM THE EDITOR A word from the editor Welcome to issue 67. not fail (why not at trip to Lisbon instead?). It includes the amusing elcome to another issue of the dialog; WNewsletter. We include the usual interesting range of articles, ‘Columbus: “But your guidelines student reports, meeting reports and say that a lot of preliminary data so on, but I am also very pleased are not required for proposals of to include the biographies of our high impact”. newest Honorary Members, a group Ferdinand: “And you believe that? of outstanding geneticists who have Hahahaha! What an idiot”.’ all made great contributions to the The article makes some excellent field. I wonder what they would points and makes them well. It is make of an amusing, yet somewhat a must-read, and reviewers and depressing commentary published panels should remember that if in a recent issue of Genome Biology it cannot fail and if we know the (Goodbye Columbus: Genome answers beforehand, it is not Biology 2012 13:155)? really science. The article places Columbus before Read on and enjoy, and I can only the King and Queen of Spain after hope that the summer weather his funding application to sail west where you are, is a darn sight to seek the Indies has been rejected.
    [Show full text]
  • Print RSBL 4 4 Cover
    RSBL_4_4_cover.qxp 7/4/08 4:03 PM Page 2 GUIDANCE FOR AUTHORS Editor Selection criteria Categories The criteria for selection are scientific excellence, originality and Papers published in Biology Letters will be categorised by subject, Professor Brian Charlesworth interest across disciplines within biology. Papers are assessed by the which include Publishing Editor Editorial Board for suitability before full peer-review. Their • animal behaviour • molecular evolution Fiona Pring recommendations are passed to the Editor. The Editor is responsible for all editorial decisions and he makes these decisions based on the • biomechanics • neurobiology reports received from the referees and the Editorial Board. • community ecology • palaeontology Editorial Board • evolutionary biology Publishing format • pathogen biology Brian Charlesworth, Editor Jessica Gurevitch • evolutionary developmental Biology Letters are published regularly online and in bimonthly print • phylogeny School of Biological Sciences, University of Edinburgh Department of Ecology and Evolution, Stony Brook University biology Kathryn Arnold Daniel Haydon issues. Along with all Royal Society journals, we are committed to • physiology Division of Environmental and Evolutionary Biology, University of Glasgow Division of Environmental and Evolutionary Biology, University of Glasgow archiving and providing perpetual access. Although the printed • genome biology Phoebe Barnard Joan Herbers version of Biology Letters is limited to 2500 words, there is the Global Change Research Group,
    [Show full text]