Morphology, Cell-Division, and Phylogeny of Schmidingerothrix Elongata Spec

Total Page:16

File Type:pdf, Size:1020Kb

Morphology, Cell-Division, and Phylogeny of Schmidingerothrix Elongata Spec Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 62 (2018) 24–42 Morphology, cell-division, and phylogeny of Schmidingerothrix elongata spec. nov. (Ciliophora, Hypotricha), and brief guide to hypotrichs with Gonostomum-like oral apparatus Xiaoteng Lua,b,c,1, Jie Huangd,1, Chen Shaoa,∗, Helmut Bergere,∗ aThe Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China bUniversity of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria cInstitute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China dKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China eConsulting Engineering Office for Ecology, Radetzkystrasse 10, 5020 Salzburg, Austria Received 29 June 2017; received in revised form 2 November 2017; accepted 6 November 2017 Abstract The hypotrich Schmidingerothrix elongata spec. nov., discovered in saline (20‰) soil of the Longfeng Wetland, Daqing, northern China, was studied using live observation and protargol impregnation. It is characterized, inter alia, by colorless cortical granules arranged in short rows, three frontoventral cirral rows with the rightmost extending far posteriorly, and 4–8, usually six macronuclear nodules. Cell division proceeds as in congeners and confirms the lack of dorsal ciliature. In phylogenetic analyses based on SSU rDNA, S. elongata is sister of S. salinarum + Paracladotricha salina. A re-investigation of the type slides of P. salina, type of Paracladotricha, revealed a misobservation in the original description. Since P. salina lacks, like Schmidingerothrix spp., a dorsal ciliature, Paracladotricha becomes a junior, subjective synonym of Schmidingerothrix with S. salina comb. nov. as fourth species. A review of the phylogenetic analyses dealing with Schmidingerothrix shows that its position is variable. However, together with the gonostomatid oral apparatus it can be hypothesized that Schmidingerothrix is a member of the Gonostomatidae or a close relative. A list of genera (14) and species (58) which have – like Schmidingerothrix – a gonostomatid oral apparatus, as well as a key to these genera are provided. © 2017 Elsevier GmbH. All rights reserved. Keywords: China; Guide; Longfeng Wetland; Saline habitat; Soil biology; Taxonomy Introduction Schmidingerothrix was established by Foissner (2012) for ∗Corresponding authors. S. extraordinaria Foissner, 2012, a peculiar hypotrichous cil- E-mail addresses: [email protected] (C. Shao), iate from highly saline soils in Africa. Somewhat later, two [email protected] (H. Berger). further species were described from saline waters in Europe 1 Co-first author. https://doi.org/10.1016/j.ejop.2017.11.001 0932-4739/© 2017 Elsevier GmbH. All rights reserved. X. Lu et al. / European Journal of Protistology 62 (2018) 24–42 25 and China, respectively, namely S. salinarum Foissner et al., China, on 6 May 2014. Samples were malodorous (very likely 20141 and Paracladotricha salina Shao et al., 2017, type due to hydrogen sulfide), and filled with rotten leaves and of Paracladotricha Shao et al., 20171. A re-analysis of the branches. For preservation and future isolation, samples were type material of P. salina showed that the dorsal ciliature dried at room temperature (about 24 ◦C) immediately after was incorrectly described resulting in synonymy of Para- collection. cladotricha and Schmidingerothrix. Ciliates were made to excyst by applying the non-flooded In January 2015, an obviously undescribed hypotrich was Petri dish method (Foissner et al., 2014). They were then isolated from saline soil of Longfeng Wetland, a district of isolated and non-clonal cultures were established at room Daqing, northern China. The analysis of its morphology and temperature (about 24 ◦C) in Petri dishes containing filtered cell division as well as the sequence of the small subunit soil percolate and squeezed rice grains to enrich the bacterial ribosomal DNA (SSU rDNA) indicate that it represents a food. further Schmidingerothrix species. Living specimens were observed using bright field and dif- The phylogenetic position of Schmidingerothrix in molec- ferential interference contrast microscopy (Foissner 2014). ular trees is uncertain for two reasons, namely (i) the type Protargol preparation was used to reveal the ciliature and the species was not sequenced (Foissner 2012), and (ii) the nuclear apparatus (Wilbert 1975). Counts and measurements other species can be found at various positions, for exam- of prepared specimens were performed at a magnification ple isolated as single branch (e.g., Foissner et al., 2014; Lu of 1000×. Drawings of protargol-prepared cells were made et al. 2015; present work), as sistergroup of the urostylids with the aid of a drawing device (camera lucida). To illustrate (Li et al. 2014; Luo et al. 2016, 2017), or in a cluster the changes occurring during morphogenesis, old (parental) with Gonostomum (Heber et al. 2014; Huang et al. 2016). structures are depicted by contour whereas new ones are Foissner (2012) put Schmidingerothrix into the monotypic shaded black. family Schmidingerotrichidae. In the discussion of division, Foissner et al. (2014, p. 73) compared Schmidingerothrix Terminology salinarum with “some supposed relatives, viz. Cladotricha, Gonostomum, and Wallackia”. The similarity with these gen- General terminology is mainly according to Lynn (2008); era is mainly due to the oral apparatus, which is more or less for terms specific for hypotrichs, see Berger (1999, 2006, gonostomatid in all these taxa. 2008, 2011) and Foissner and Al-Rasheid (2006). The tail- Berger (2011) assigned 33 species in seven genera to the length was measured according to the “1/3-method” (Chen Gonostomatidae Small & Lynn, 1985. However, since then et al. 2016). The frontoventral cirral rows are designated as several new species and genera have been described. Thus, ontogenetic numbering (Shao et al. 2014, 2017), that is, the we provide an updated list of genera and species with such an rows have the same designation as the anlagen from which oral apparatus. Together with an updated key to the genera, they originate. It should be noted that the Schmidingerothrix this will simplify the identification of species described after extraordinaria (type species of the genus) lacks cirral row I the revision of Gonostomum by Berger (2011). and II, thus frontoventral cirral row (FR) in Foissner (2012) is row III in the present paper; whereas the frontoventral cirral rows (V1–3) of S. salinarum (Foissner 2014) equal to row Material and Methods III–V in the present paper. Sample collection, isolation, and identification ZooBank registration Saline soil samples (0–10 cm; salinity of soil percolate ZooBank registration of present work (see Recom- about 20‰; pH 10.0) were collected in the Longfeng Wet- ◦ ◦ mendation 8A of ICZN 2012): urn:lsid:zoobank.org:pub: land (lat 46 35 30 N, long 125 13 08 E), Daqing, northern 410D9370-F872-4D66-8FED-460082AAEA5A. 1 The names Schmidingerothrix salinarum Foissner et al., 2014, Para- cladotricha Shao et al., 2014, and Paracladotricha salina Shao et al., 2014 DNA extraction, PCR amplification and have been mentioned in online-only (electronic-only) papers which lack a sequencing ZooBank registration in the work itself (Foissner et al. 2014; Shao et al. 2014). Due to this lack, these two works are not published in the sense of Genomic DNA was extracted from single cells using nomenclature and the new names mentioned therein are not available (ICZN, 2012, Article 8.5.3; further papers suffering on the same problem and cited DNeasy Tissue kit (Qiagen, CA) following the manufac- in the present work are those by Heber et al. 2014 and Bharti et al. 2015). turer’s instructions, with the modification that 25% of the In the present work, all names mentioned in such “unpublished” papers are volume suggested for each reagent solution was used. The disclaimed for nomenclatural purposes (ICZN, 1999, Article 8.3). The orig- SSU rDNA gene was amplified according to Gao et al. (2014), inal description of Paracladotricha and P. salina was recently published by using the primers 18S-F (5-AAC CTG GTT GAT CCT GCC Shao et al. (2017), the original description of S. salinarum is in preparation. AGT-3) and 18S-R (5-TGA TCC TTC TGC AGG TTC ACC However, as explained by Shao et al. (2017), such an “unpublished” paper remains available as a source of published descriptions and illustrations. TAC-3 )(Medlin et al. 1988). 26 X. Lu et al. / European Journal of Protistology 62 (2018) 24–42 Phylogenetic analyses ventral membranelles. Three, rarely four frontoventral cirral rows with three (row II), five (III), and 23 (IV) cirri on aver- The SSU rDNA sequence of Schmidingerothrix elongata age. Right and left marginal cirral row composed of about spec. nov. and those of 69 other hypotrichs were downloaded 27 and 22 cirri on average, respectively. 4–8, usually seven from GenBank database for the phylogenetic analyses (for (median) macronuclear nodules arranged in or slightly left of accession numbers, see Fig. 6). In preliminary tests, we used body midline, 1–4 micronuclei. euplotids as outgroup. Usually, the core urostylids were sister Type locality. Saline soil from the Longfeng Wetland, to the large clade containing Schmidingerothrix (or its junior Daqing, northern
Recommended publications
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • Uroleptus Willii Nov. Sp., a Euplanktonic Freshwater Ciliate
    Uroleptus willii nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes * Bettina S ONNTAG , Michaela C. S TRÜDER -K YPKE & Monika S UMMERER Abstract : The eUplanktonic ciliate Uroleptus willii nov. sp. (Dorsomarginalia) was discovered in the plankton of the oligo- mesotrophic PibUrgersee in AUstria. The morphology and infraciliatUre of this new species were stUdied in living cells as well as in specimens impregnated with protargol and the phylogenetic placement was inferred from the small sUbUnit ribosomal RNA (SSrRNA) gene seqUence. In vivo, U. willii is a grass-green fUsiform spirotrich of 100– 150 µm length. It bears aboUt 80–100 sym - biotic green algae and bUilds a lorica. Uroleptus willii is a freqUent species in the sUmmer ciliate assemblage in the Upper 12 m of PibUrgersee with a mean abUndance of aboUt 170 individUals l -1 from May throUgh November. The algal symbionts of this ciliate are known to synthesise Ultraviolet radiation – absorbing compoUnds. At present, the taxonomic position of Uroleptus has not yet been solved since the morphological featUres of the genUs agree well with those of the Urostyloidea, while the molecUlar analy - ses place the genUs within the Oxytrichidae. Uroleptus willii follows this pattern and groUps UnambigUoUsly with other Uroleptus species. We assign oUr new species to the Dorsomarginalia BERGER , 2006. However, this placement is preliminary since it is based on the assUmption that the genUs Uroleptus and the Oxytrichidae are both monophyletic taxa, and the monophyly of the latter groUp has still not been confirmed by molecUlar data.
    [Show full text]
  • Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2009 Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Life Sciences Commons Recommended Citation Dunthorn, Micah, "Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers" (2009). Open Access Dissertations. 95. https://doi.org/10.7275/fyvd-rr19 https://scholarworks.umass.edu/open_access_dissertations/95 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented by MICAH DUNTHORN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2009 Organismic and Evolutionary Biology © Copyright by Micah Dunthorn 2009 All Rights Reserved CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented By MICAH DUNTHORN Approved as to style and content by: _______________________________________
    [Show full text]
  • Ciliophora: Sporadotrichida: Oxytrichidae) New to Korea
    Journal of Species Research 1(1):78-86, 2012 Morphological redescriptions of three Cyrtohymena ciliates (Ciliophora: Sporadotrichida: Oxytrichidae) new to Korea Yeon Uk Kim, Jung Mi Lee, Choon Bong Kwon and Mann Kyoon Shin* Department of Biological Science, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea *Correspondent: [email protected] Three ciliate species of genus Cyrtohymena, C. australis Foissner, 1995, C. citrina (Berger & Foissner, 1987) and C. muscorum (Kahl, 1932) new to Korea, were collected from semi-terrestrial habitats. The description was based on the observation of live and silver stained specimens. Diagnostic characteristics of these species are as follows. C. autralis: size about 275×100 μm in live specimens. Cortical granules yellowish. 18-31 right and 31-40 left marginal cirri in number. Dorsal kineties eight rows. C. citrina: size about 180×50 μm in live specimens. Cortical granules yellowish. 26-32 right and 23-27 left marginal cirri in number. Dorsal kineties five to six rows. C. muscorum: size about 180×60 μm in live specimens. Cortical granules reddish. 31-34 right and 33-36 left marginal cirri in number. Dorsal kineties six rows. Three species of Cyrtohymena have been added to Korean ciliate fauna from this study. Including previous one species of C. quadrinucleata, four species of this genus in total have been recorded so far in this country. Keywords: Cyrtohymena, freshwater, morphology, soil, taxonomy, terrestrial collected from semi-terrestrial and rarely from marine INTRODUCTION habitats (Kahl, 1932; Gellért, 1956; Foissner, 1997; 1999; Berger, 1999; Song et al., 2002; Çapar, 2007). The oxytrichid genus Cyrtohymena Foissner, 1989 is In this study, we described three Cyrtohymena species highly specialized group of hypotrichous ciliates which which are new to Korea, C.
    [Show full text]
  • Ciliata, Hypotrichida, Oxytrichidae)
    Alli Soc. Tosc. Sci. Nat. , Mem., Serie B, 92 (1985) pagg. 15-27, figg. 3. D. AMMERMANN (*) SPECIES CHARACTERIZATION AND SPECIATION IN THE STYLONYCHIA/OXYTRICHA GROUP (CILIATA, HYPOTRICHIDA, OXYTRICHIDAE) Riassunto - Caratterizzazione delle species e speciazione nel gruppo Stylony­ chialOxytricha (Ciliata, Hypotrichida, Oxytrichidae). Sono state esaminate alcune ca­ ratteristiche morfologiche e in particolare molecolari di species appartenenti al gruppo StylonychialOxytricha. Ne viene discusso il loro significato al fine della determinazio­ ne a livello di species e per chiarire i rapporti filetici ai vari livelli tra i taxa dei due generi in studio. Viene sottolineato che gli isoenzimi e il modello di bandeggio del DNA macronucleare sono dei buoni marcatori per la determinazione delle specie, mentre gli isoenzimi, combinati alle caratteristiche morfologiche e morfogenetiche, possono dare un ottimo quadro dei rapporti filogenetici che intercorrono fra i mem­ bri del gruppo. Sono riportati poi i meccanismi di isolamento riproduttivo tra le due specie crip­ tiche: Stylonychia mytilus e Stylonychia lemnae. Sulla base dei dati raccolti viene avanzata l'ipotesi che, nelle aree dove le due specie si sovrappongono, esse mostrano maggior divergenza morfologica e meccanismi di isolamento rinforzato. Abstract - Several morphological and especially molecular characteristics of the species of the StylonychialOxytricha group are described. lt is discussed which value they may have for species determination and for the clarification of the phylogenetic relationship of lower and higher taxa. lt is concluded that the isoen­ zyme and the macronuclear DNA banding pattern are good characteristics for species determination. For the investigation of phylogenetic relationship the isoenzymes, com­ bined with morphology and morphogenesis of the cell, are good characteristics.
    [Show full text]
  • Taxonomic and Morphogenetic Description of the Freshwater Ciliate Aponotohymena Isoaustralis N. Sp.(Ciliophora; Oxytrichidae) Isolated from Sanjay Lake, Delhi, India
    Acta Protozool. (2017) 56: 93–107 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.17.008.7483 PROTOZOOLOGICA Taxonomic and Morphogenetic Description of the Freshwater Ciliate Aponotohymena isoaustralis n. sp. (Ciliophora; Oxytrichidae) Isolated from Sanjay Lake, Delhi, India Renu GUPTA1, Jeeva Susan ABRAHAM2, Sripoorna SOMASUNDARAM2, Ravi TOTEJA2, Seema MAKHIJA2 and Hamed A EL-SEREHY3 1 Maitreyi College, University of Delhi, Bapudham Complex, Chanakyapuri, New Delhi, India; 2 Ciliate Biology Laboratory, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, India; 3 Zoology Department, College of Science, King Saud University, Riyadh Saudi Arabia Abstract. Morphology, morphogenesis and molecular phylogeny of a freshwater oxytrichid ciliate, Aponotohymena isoaustralis n. sp. collected from Sanjay Lake (28°36′51″N, 77°18′14″E), Delhi, India, were studied. The described species is characterized by a flexible body, with body size (in vivo) of about 148 × 46 µm and yellowish green cortical granules. Morphological characters exhibit: undulat- ing membranes in Notohymena–pattern; two macronuclei and absence of micronucleus (amicronucleate); about 36 adoral membranelles; 18 frontoventral-transverse (FVT) cirri; one right and one left marginal row separated posteriorly; 6 dorsal rows; 7 caudal cirri arranged in 2 + 2 + 3 pattern (constant). In the present study, a detailed description of all the developmental stages is also provided. Prominent distin- guishing features of the new species are the absence of micronucleus, 7 caudal cirri (constant), yellowish green cortical granules aligned along the margins and irregularly distributed throughout the cell. They may also be randomly concentrated as clusters along the left margin and posterior end of the cell.
    [Show full text]
  • Program 12 List of Posters 23 Abstracts – Symposia 27 Abstracts – Parallel Sessions 31 Abstracts – Posters 54 Social Program 74 List of Participants 77
    1 2 Conference venues Protist2012 will take place in three different buildings. The main location is Vilhelm Bjerknes (building 13 on the map). This is the Life Science library at the campus and is where registration will take place at July 29. This is also the location for the posters and where lunches will be served. In the library there is access to computers and internet for all conferences participants. The presentations will be held in Georg Sverdrups (building 27) and Helga Engs (building 20) Helga Engs Georg Sverdrups Vilhelm Bjerknes Map and all photos: UiO 3 4 Index: General information 9 Program 12 List of posters 23 Abstracts – Symposia 27 Abstracts – Parallel sessions 31 Abstracts – Posters 54 Social program 74 List of participants 77 5 ISOP – International Society of Protistologists The Society is an international association of scientists devoted to research on single-celled eukaryotes, or protists. The ISOP promotes the presentation and discussion of new or important facts and problems in protistology, and works to provide resources for the promotion and advancement of this science. We are scientists from all over the world who perform research on protists, single- celled eukaryotic organisms. Individual areas of research involving protists encompass ecology, parasitology, biochemistry, physiology, genetics, evolution and many others. Our Society thus helps bring together researchers with different research foci and training. This multidisciplinary attitude is rather unique among scientific societies, and it results in an unparalleled forum for sharing and integrating a wide spectrum of scientific information on these fascinating and important organisms. ISOP executive meeting Sunday, July 29, 13:00 – 17:00 ISOP business meeting Tuesday, July 31, 17:30 Both meeting will be held in Vilhelm Bjerknes (building 13) room 209.
    [Show full text]
  • The Evolution of Cellular Computing: Nature's Solution to a Computational Problem
    BioSystems 52 (1999) 3–13 www.elsevier.com/locate/biosystems The evolution of cellular computing: nature’s solution to a computational problem Laura F. Landweber a,*, Lila Kari b a Ecology and E6olutionary Biology, Princeton Uni6ersity, Princeton, NJ 08544-1003, USA b Department of Computer Science, Uni6ersity of Western Ontario, London, Ont., N6A 5B7, Canada Abstract How do cells and nature ‘compute’? They read and ‘rewrite’ DNA all the time, by processes that modify sequences at the DNA or RNA level. In 1994, Adleman’s elegant solution to a seven-city directed Hamiltonian path problem using DNA launched the new field of DNA computing, which in a few years has grown to international scope. However, unknown to this field, two ciliated protozoans of the genus Oxytricha had solved a potentially harder problem using DNA several million years earlier. The solution to this problem, which occurs during the process of gene unscrambling, represents one of nature’s ingenious solutions to the problem of the creation of genes. RNA editing, which can also be viewed as a computational process, offers a second algorithm for the construction of functional genes from encrypted pieces of the genome. © 1999 Elsevier Science Ireland Ltd. All rights reserved. Keywords: DNA computing; Scrambled gene; Molecular evolution; Ciliate; Hypotrich 1. Gene unscrambling as a computational problem germline micronucleus after sexual reproduction, during the course of development. The genomic copies of some protein-coding genes in the mi- 1.1. Introduction cronucleus of hypotrichous ciliates are obscured by the presence of intervening non-protein-coding Ciliates are a diverse group of 8000 or more DNA sequence elements (internally eliminated se- unicellular eukaryotes (nucleated cells) named for quences or IESs).
    [Show full text]
  • Oxytricha Nova (= Sterkiella Nova Sp
    Acta Protozool. (1999) 38:215 - 248 AGM PRllTllZOtlTtlGIGA Identification and Ontogenesis of the nomen nudum Hypotrichs (Protozoa: Ciliophora) Oxytricha nova (= Sterkiella nova sp. n.) and O. trifallax (= S. histriomuscorum) Wilhelm FOISSI\ERI and Helmut BERGER2 rUniversität Salzburg, Institut für Zoologie, Salzburg; 2Technisches Büro für Ökobgie, Salzburg, Austria Summary Oxyticha nova and O. tifallaxwere named and established as viable genetic systems (via frozenresting cysts) by molecular biologists, but never determined or described in a scientific way. Thus, their identity is unknown and both are z omen nudum species according to the International Code of Zoological Nomenclature. In the present paper, this bewildering situation is rectified by investigating offspring of the original populations. It is shown, by a detailed literature review and morphological and ontogenetical analysis, using live observation, silver impregnation and scanning electronmicroscopy, thatbothpopulations belong to a single morphotype,iz. Sterkiellahistiomuscorurn (Foissner, Blatterer, Berger and Kohmann, 1991), a cosmopolitan species very frequent in limnetic and terrestrial habitats. However, on the molecular level, O. nova and O. trifall.ax are very distinct, suggesting that they are different species. Thus, ,§. histriomuscorurm is a complex of sibling species. For the sake of nomenclatural continuity and priority, we suggest identifying O. trtfailax as S. histriornuscorum and establishing O. noya as a new species, Sterkiella nova sp. n. Both species are diagnosed by a combination of morphological, ontogenetical and gene sequence characters. Field populations of S. histiomuscorwn should be designated as gene sequence "Sterkiella histriomuscorutn complex" if no molecular data are available to decide whether they belong to S. nova, S. histiomuscorumr or to another not yet described species of the complex.
    [Show full text]
  • The Diverse Morphogenetic Patterns in Spirotrichs and Philasterids
    Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 61 (2017) 439–452 REVIEW The diverse morphogenetic patterns in spirotrichs and philasterids: Researches based on five-year-projects supported by IRCN-BC and NSFC a,b,1 a,c,1 a,1 a,d,1 e,∗ Xumiao Chen , Xiaoteng Lu , Xiaotian Luo , Jiamei Jiang , Chen Shao , f g a,h Khaled A.S. Al-Rasheid , Alan Warren , Weibo Song a Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China b Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China c University of Innstruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria d College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China e The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China f Zoology Department, King Saud University, Riyadh 11451, Saudi Arabia g Department of Life Sciences, Natural History Museum, London SW7 5BD, UK h The Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Available online 17 May 2017 Abstract In the five years 2012–2016, the ciliate research group at Ocean University of China and their collaborators have performed several investigations on the morphogenesis of ciliated protists during binary division. Multiple samples were collected from 17 cities and cortical development studied in 42 species belonging to 32 genera and 13 families (Amphisiellidae, Euploti- dae, Kahliellidae, Oxytrichidae, Philasteridae, Pseudokeronopsidae, Pseudourostylidae, Schmidingerotrichidae, Spirofilidae, Strobilidiidae, Uroleptidae, Uronychiidae and Urostylidae).
    [Show full text]
  • Phylogenetic Relationships Within the Class Spirotrichea (Ciliophora)
    Molecular Phylogenetics and Evolution Vol. 21, No. 1, October, pp. 86–92, 2001 doi:10.1006/mpev.2001.0997, available online at http://www.idealibrary.com on Phylogenetic Relationships within the Class Spirotrichea (Ciliophora) Inferred from Small Subunit rRNA Gene Sequences Detlef Bernhard,* Alexandra Stechmann,* Wilhelm Foissner,† Dieter Ammermann,‡ Manuela Hehn,§ and Martin Schlegel* *Spezielle Zoologie, Institut fu¨ r Zoologie, Universita¨ t Leipzig, Talstrasse 33, D-04103 Leipzig, Germany; †Institut fu¨ r Zoologie, Universita¨ t Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria; ‡Zoologisches Institut, Universita¨t Tu¨ bingen, Auf der Morgenstelle 28, D-72076 Tu¨ bingen, Germany; and §Scheffelweg 54, D-72793 Pfullingen, Germany Received October 24, 2000; revised April 25, 2001 Spirotrichea (Greenwood et al., 1991). Together with The small subunit rDNAs of five species belonging to the karyorelicteans, the heterotrichs are the sister the Euplotidae and eight species of the Oxytrichidae group of all other ciliates (Baroin-Tourancheau et al., were sequenced to obtain a more detailed picture of 1992; Hirt et al., 1995; Hammerschmidt et al., 1996). In the phylogenetic relationships within the Spiro- recent classifications (Lynn, 1996; Lynn and Small, trichea (Ciliophora). Various tree reconstruction algo- 1997), the Spirotrichea comprise the hypotrichs (e.g., rhythms yielded nearly identical topologies. All Eu- Euplotes), the stichotrichs (e.g., Oxytricha, Styl- plotidae were separated from the other Spirotrichea onychia), the choreotrichs (e.g., Strombidium), and the by a deep split. Further, a large genetic distance be- oligotrichs (e.g., Halteria). tween the marine genus Moneuplotes and the freshwa- In this study we focus on the evolution of the sticho- ter species of Euplotoides was found.
    [Show full text]
  • Morphology, Morphogenesis, and Molecular Phylogeny of a New Freshwater Ciliate, Quadristicha Subtropica N
    ORIGINAL RESEARCH published: 15 July 2021 doi: 10.3389/fmicb.2021.705826 Morphology, Morphogenesis, and Molecular Phylogeny of a New Freshwater Ciliate, Quadristicha subtropica n. sp. (Ciliophora, Hypotrichia) Chen Shao 1†, Qi Gao 1†, Alan Warren 2 and Jingyi Wang 1* Edited by: Weiwei Liu, 1 Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Chinese Academy of Sciences, China Xi’an, China, 2 Department of Life Sciences, Natural History Museum, London, United Kingdom Reviewed by: Santosh Kumar, The morphology and the regulation of cortical pattern associated with the cell size, division, Zoological Survey of India, India Zheng Wang, and phylogenetic position of a new hypotrichous ciliate, Quadristicha subtropica n. sp. Yale University, United States collected from a freshwater pond in southern China, were investigated. Quadristicha *Correspondence: subtropica n. sp. is characterized as follows: size in vivo 60–115 μm × 25–45 μm; 19–21 Jingyi Wang adoral membranelles; buccal cirrus near anterior end of endoral and paroral; cirrus IV/3 [email protected] at about level of buccal vertex; right marginal row begins ahead of buccal vertex; 11–16 †These authors have contributed equally to this work right and 12–19 left marginal cirri; and dorsal cilia about 5 μm long. The basic morphogenetic process in Q. subtropica n. sp. is consistent with that of the type species, Quadristicha Specialty section: setigera. Phylogenetic analyses based on small subunit ribosomal DNA sequence data This article was submitted to Aquatic Microbiology, reveal that the systematic position of Q. subtropica n. sp. is rather unstable with low a section of the journal support values across the tree and the genus Quadristicha is not monophyletic.
    [Show full text]