1 Application of Scientific Criteria for Identifying Hydrothermal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Larvae from Deep-Sea Hydrothermal Vents Disperse in Surface Waters
BPT06-12 JpGU-AGU Joint Meeting 2017 Larvae from deep-sea hydrothermal vents disperse in surface waters *Takuya Yahagi1, Tomihiko Higuchi1, Shirai Kotaro1, Hiromi Kayama WATANABE2, Anders Warén3 , Shigeaki Kojima1, Yasunori Kano1 1. Atmosphere and Ocean Research Institute, The University of Tokyo, 2. Japan Agency for Marine-Earth Science and Technology, 3. Swedish Museum of Natural History, Stockholm Larval dispersal significantly contributes to the geographic distribution, population dynamics and evolutionary processes of animals endemic to deep-sea hydrothermal vents. Benthic invertebrates with a pelagic larval period can be categorized as lecithotrophic or planktotrophic species. Among vent-animals, the former lecithotrophs generally disperse near the ocean floor while the latter planktotrophs have been considered to disperse in mid-water, above the influence of a hydrothermal plume. However, surprisingly little is known as to the extent that the planktotrophic larvae migrate vertically to shallower waters to take advantages of richer food supplies and strong currents. Here, we first provide converging evidence from the taxonomy, phylogeny, population genetics, physiology and behaviour of the species of Shinkailepadinae (Gastropoda: Neritimorpha) for their vertical migration as long-lived planktotrophic larvae from deep-sea hydrothermal vents to the surface water. Sixteen species were identified from global hydrothermal vent fields and cold methane seeps as the extant members of the subfamily. They generally show wide distribution ranges with their panmictic population structure. The culture experiments of larvae of the vent-endemic Shinkailepas myojinensis strongly suggested that their larvae grow and disperse in the surface water for an extended period of time. The oxygen isotopic analyses of the larval and adult shells of three Shinkailepas species, which is the first attempt for vent-endemic taxa, perfectly supported the vertical migration of larvae as an obligatory part of the species’ life cycles. -
A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) from Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity
fmars-06-00381 July 15, 2019 Time: 15:56 # 1 ORIGINAL RESEARCH published: 16 July 2019 doi: 10.3389/fmars.2019.00381 A New Vent Limpet in the Genus Lepetodrilus (Gastropoda: Lepetodrilidae) From Southern Ocean Hydrothermal Vent Fields Showing High Phenotypic Plasticity Katrin Linse1*, Christopher Nicolai Roterman2 and Chong Chen3 1 British Antarctic Survey, Cambridge, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan The recently discovered hydrothermal vent ecosystems in the Southern Ocean host a suite of vent-endemic species, including lepetodrilid limpets dominating in abundance. Limpets were collected from chimneys, basalts and megafauna of the East Scotia Ridge Edited by: segments E2 and E9 and the Kemp Caldera at the southern end of the South Sandwich Wei-Jen Chen, Island arc. The limpets varied in size and shell morphology between vent fields and National Taiwan University, Taiwan displayed a high degree of phenotypic plasticity. Size frequency analyses between vent Reviewed by: fields suggests continuous reproduction in the limpet and irregular colonisation events. Marjolaine Matabos, Institut Français de Recherche pour Phylogenetic reconstructions and comparisons of mitochondrial COI gene sequences l’Exploitation de la Mer (IFREMER), revealed a level of genetic similarity between individuals from the three vent fields France Junlong Zhang, consistent with them belonging to a single molecular operational taxonomic unit. Here Institute of Oceanology (CAS), China we describe Lepetodrilus concentricus n. sp., and evaluate its genetic distinctness and *Correspondence: pylogenetic position with congeners based on the same gene. Results indicate that Katrin Linse L. -
Gastropoda: Prosobranchia: Neritacea: Phenacolepadidae
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 1992 Band/Volume: 93B Autor(en)/Author(s): Beck Lothar A. Artikel/Article: Two new neritacean limpets (Gastropoda: Prosobranchia: Neritacea: Phenacolepadidae) from active hydrothermal vents at Hydrothermal Field 1 "Wienerwald" in the Manus Back-Arc Basin (Bismarck Sea, Papua-New Guinea). 259-275 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 93 B 259-275 Wien, 30. August 1992 Two new neritacean limpets (Gastropoda: Prosobranchia: Neritacea: Phenacolepadidae) from active hydrothermal vents at Hydrothermal Field 1 "Wienerwald" in the Manus Back-Arc Basin (Bismarck Sea, Papua-New Guinea) By LOTHAR A. BECK1) (With 3 Tables, 5 Figures and 7 Plates) Manuscript submitted January 19th, 1992 Zusammenfassung Zwei neue Gastropodenarten werden von hydrothermalen Quellen am Spreizungsrücken im Manus Back-Arc Basin (Bismarck-See, Papua-Neuguinea) beschrieben und die Morphologie ihrer Schale, des Weichkörpers und der Radula verglichen mit Shinkailepas kaikatensis OKUTANI & al., 1989 und der Gattung Phenacolepas. Beide neue Arten stimmen in folgenden Merkmalen mit Phenacolepas überein: Die Schalenform und -Skulptur ist sehr ähnlich; die Calcitschicht der Schale fehlt; das Schalenwachstum ändert sich abrupt vom gewundenen Protoconch zur napfförmigen Schale; die cuticularisierten Seitenbereiche der Fußsohle sind ableitbar von Randflächen der Fußsohle von Phenacolepas; die Fortpflanzungsorgane sind sehr ähnlich: bei Männchen ist der rechte Kopflappen zu einem Penis umgeformt, bei Weibchen sind u. a. ein Gonoporus und eine Vaginal-Öffnung mit anschließender Spermatophorentasche zu finden. Die Variabilität der Radulamerkmale innerhalb der Gattung Phenacolepas umfaßt auch die beiden neuen Arten. -
The Hydrothermal Vent Community of a New Deep-Sea Field, Ashadze-1, 12
Journal of the Marine Biological Association Archimer of the United Kingdom http://archimer.ifremer.fr February 2011, Vol. 91 (1) : Pages 1-13 http://dx.doi.org/10.1017/S0025315410000731 © 2010 Marine Biological Association of the United Kingdom, Cambridge University Press ailable on the publisher Web site The hydrothermal vent community of a new deep-sea field, Ashadze-1, 12°58′N on the Mid-Atlantic Ridge M-C. Fabri1, *, A. Bargain2, P. Briand1, A. Gebruk3, Y. Fouquet4, M. Morineaux1 and D. Desbruyères1 1 Département Etude des Ecosystèmes Profonds, Ifremer Brest, BP70, 29280 Plouzané, France, 2 blisher-authenticated version is av Université de Nantes, Equipe Mer Molécule et Santé EA2160, BP 92208, 44322 Nantes, France, 3 P.P. Shirshov Institute of Oceanology, Russian Academy of Science, Nakhimovsky Pr. 36, Moscow 117997, Russia, 4 Département Géosciences Marine, Ifremer Brest, BP70, 29280 Plouzané, France *: Corresponding author : M-C. Fabri, email address: [email protected] Abstract: Ashadze-1 (12° 58′N 44° 51′W, 4080 m) on the Mid-Atlantic Ridge (MAR) is the deepest known active hydrothermal vent field. The first observations on this site were numerous clear and black smokers and surprisingly few known symbiotic species dominant in other vent areas on the MAR. The species most abundant at Ashadze-1 are those usually found at the periphery of hydrothermal communities: sea-anemones Maractis rimicarivora and chaetopterid polychaetes Phyllochaetopterus sp. nov. This study comprised site mapping and faunal sampling and Ashadze-1 was completely mapped by using the remote operated vehicle ‘Victor 6000’ and a new high resolution tool available for deep-sea ccepted for publication following peer review. -
Vent Fauna in the Mariana Trough 25 Shigeaki Kojima and Hiromi Watanabe
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Vent Fauna in the Mariana Trough 25 Shigeaki Kojima and Hiromi Watanabe Abstract The Mariana Trough is a back-arc basin in the Northwestern Pacific. To date, active hydrothermal vent fields associated with the back-arc spreading center have been reported from the central to the southernmost region of the basin. In spite of a large variation of water depth, no clear segregation of vent faunas has been recognized among vent fields in the Mariana Trough and a large snail Alviniconcha hessleri dominates chemosynthesis- based communities in most fields. Although the Mariana Trough approaches the Mariana Arc at both northern and southern ends, the fauna at back-arc vents within the trough appears to differ from arc vents. In addition, a distinct chemosynthesis-based community was recently discovered in a methane seep site on the landward slope of the Mariana Trench. On the other hand, some hydrothermal vent fields in the Okinawa Trough backarc basin and the Izu-Ogasawara Arc share some faunal groups with the Mariana Trough. The Mariana Trough is a very interesting area from the zoogeographical point of view. Keywords Alvinoconcha hessleri Chemosynthetic-based communities Hydrothermal vent Mariana Arc Mariana Trough 25.1 Introduction The first hydrothermal vent field discovered in the Mariana Trough was the Alice Springs, in the Central Mariana Trough The Mariana Trough is a back-arc basin in the Northwestern (18 130 N, 144 430 E: 3,600 m depth) in 1987 (Craig et al. -
Patterns of Genome Size Diversity in Invertebrates
PATTERNS OF GENOME SIZE DIVERSITY IN INVERTEBRATES: CASE STUDIES ON BUTTERFLIES AND MOLLUSCS A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by PAOLA DIAS PORTO PIEROSSI In partial fulfilment of requirements For the degree of Master of Science April, 2011 © Paola Dias Porto Pierossi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82784-0 Our file Notre reference ISBN: 978-0-494-82784-0 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
James Hamilton Mclean: the Master of the Gastropoda
Zoosymposia 13: 014–043 (2019) ISSN 1178-9905 (print edition) http://www.mapress.com/j/zs/ ZOOSYMPOSIA Copyright © 2019 · Magnolia Press ISSN 1178-9913 (online edition) http://dx.doi.org/10.11646/zoosymposia.13.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:20E93C08-5C32-42FC-9580-1DED748FCB5F James Hamilton McLean: The master of the Gastropoda LINDSEY T. GROVES1, DANIEL L. GEIGER2, JANN E. VENDETTI1, & EUGENE V. COAN3 1Natural History Museum of Los Angeles County, Malacology Department, 900 Exposition Blvd., Los Angeles, California 90007, U.S.A. E-mail: [email protected]; [email protected] 2Santa Barbara Museum of Natural History, Department of Invertebrate Zoology, 2559 Puesta del Sol, Santa Barbara, California 93105, U.S.A. E-mail: [email protected] 3P.O. Box 420495, Summerland Key, Florida 33042, U.S.A. E-mail: [email protected] Abstract A biography of the late James H. McLean, former Curator of Malacology at the Natural History Museum of Los Angeles County is provided. It is complemented with a full bibliography and list of 344 taxa named by him and co-authors (with type information and current status), as well as 40 patronyms. Biography James Hamilton McLean was born in Detroit, Michigan, on June 17, 1936. The McLean family moved to Dobbs Ferry, New York, on the Hudson River in 1940, a short train ride and subway ride away from the American Museum of Natural History (AMNH). His brother Hugh recalled that, “AMNH became the place of choice to go to whenever we could get someone to take us. Those visits opened our eyes to the variety and possibilities of what was out there, waiting for us to discover and collect.” From an early age James seemed destined to have a career at a museum (Figs 1–2). -
Diversity at Deep-Sea Hydrothermal Vent and Intertidal Mussel Beds
MARINE ECOLOGY PROGRESS SERIES Vol. 195: 169-178,2000 Published March 31 ' Mar Ecol Prog Ser I Diversity at deep-sea hydrothermal vent and intertidal mussel beds Cindy Lee Van over'^', Jennifer L. Trask2 'Biology Department. College of William & Mary. Williamsburg. Virginia 23187. USA 'Institute of Marine Science, University of Alaska Fairbanks. Fairbanks, Alaska 99775. USA ABSTRACT: Hydrothermal vents are well-known for their exotic faunas, but common ecological descriptors of communities, apart from species lists, have eluded vent ecologists for decades. Using replicate sampling, we examine species richness, diversity, evenness, and composition within mussel beds at the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge, and we compare these measures to those found at intertidal mussel beds along the south-central Alaskan coast using similar sampling efforts. The number of species found at the vent mussel beds is less than half that of the inter- tidal mussel beds. From calculations of diversity and evenness indices, we find that the lower diversity of the vent mussel beds is a reflection of a reduced number of rare species found there compared to intertidal mussel beds. In contrast to relatively even distributions of deep-sea soft-sediment (non-vent) communities, both vent and intertidal mussel beds share the attribute of very uneven distributions, with a large number of individuals found in a small number of species. Based on comparisons of the Shan- non diversity index (H)within vent mussel beds and in a variety of other marine environments, we find that diversity at vent mussel beds is low, but no lower than the diversity measured in certain shallow- water environments. -
Supplementary Information
Title Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow- spreading Southwest Indian Ridge Authors Copley, JT; Marsh, L; Glover, AG; Hühnerbach, V; Nye, VE; Reid, WDK; Sweeting, CJ; Wigham, BD; Wiklund, H Description 0000-0002-9489-074X Date Submitted 2017-05-02 SUPPLEMENTARY INFORMATION Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge Copley JT 1,* , Marsh L 1, Glover AG 2, Hühnerbach V 3, Nye VE 1, Reid WDK 4, Sweeting CJ 5, Wigham BD 5, Wiklund H 2 1Ocean & Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK 2Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3formerly at National Oceanography Centre, European Way, Southampton SO14 3ZH, UK 4School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK 5Dove Marine Laboratory, School of Marine Science & Technology, Newcastle University, Cullercoats NE30 4PZ, UK *email [email protected] (corresponding author) SUPPLEMENTARY FIGURE: Images of faunal assemblages observed at Longqi vent field, Southwest Indian Ridge, during the first remotely operated vehicle (ROV) dives in November 2011: (a) active “black smoker” chimneys occupied by Rimicaris kairei ; (b) assemblage of Chrysomallon squamiferum , Hesiolyra cf. bergi , Kiwa n. sp. “SWIR”, Mirocaris fortunata in close proximity to vent fluid source; (c) abundant Chrysomallon squamiferum and Gigantopelta aegis , with Kiwa n. sp. “SWIR”, Bathymodiolus marisindicus , and Mirocaris fortunata on platform of “Tiamat” vent chimney (d) zonation of Chysomallon squamiferum , Gigantopelta aegis , Bathymodiolus marisindicus , and Neolepas sp. -
Are Spatial Variations in the Diets of Hydrothermal Fauna Linked to Local
Deep Sea Research Part II: Topical Studies in Archimer Oceanography Archive Institutionnelle de l’Ifremer September 2009, Volume 56, Issues 19-20, Pages 1649-1664 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1016/j.dsr2.2009.05.011 © 2009 Elsevier Ltd All rights reserved. Are spatial variations in the diets of hydrothermal fauna linked to local ailable on the publisher Web site environmental conditions? F. De Busserollesa, J. Sarrazina, *, O. Gauthiera, Y. Gélinasb, M.C. Fabria, P.M. Sarradina and a D. Desbruyères a DEEP/LEP, Ifremer, Centre de Brest, BP 70, 29 280 Plouzané, France b GEOTOP and Chemistry and Biochemistry Department, Concordia University, 7141 rue Sherbrooke ouest, Montréal, Québec, Canada H4B 1R6 blisher-authenticated version is av *: Corresponding author : J. Sarrazin, Tel.: +33 2 98 22 43 29; fax: +33 2 98 22 47 57, email address : [email protected] Abstract: Trophic relationships in Bathymodiolus azoricus mussel bed communities on the Tour Eiffel hydrothermal edifice (Lucky Strike) were assessed using δ13C and δ15N signatures from 14 hydrothermal species. The nutritional basis of B. azoricus was also investigated with δ34S. Faunal samples and environmental data (temperature, pH, total dissolved sulfide, iron and copper concentrations) were collected from 12 different locations on the edifice. Chemical conditions varied between microhabitats, and were all correlated to temperature. Carbon and nitrogen isotopic results revealed the presence of two, apparently independent, trophic groups. The first was composed of symbiont-bearing fauna (B. azoricus and their associated polychaetes Branchipolynoe seepensis), while the second enclosed heterotrophic fauna (bacterivores, detritivores, scavengers, predators). A majority of mussels displayed δ13C values ranging from −27‰ to −34‰, supporting thiotrophy as the dominant nutritional pathway at Tour Eiffel, with methanotrophy and filter feeding emerging as secondary strategies. -
Zr<Uthil1;Ltt}[I Ri-F* )Ifi Re$Iosrp
The malacologicalsocietymalacological society of Japan Rrc VENUS (Jap, Joun Malac.) Vol. 48, No, 4 (198Y) : 223-230 iJNSM iEEM 0 pt., zr< ut Hil 1;Ltt }[i )b> C) pt ff 8 2i. 7t 7? ri- f* )if i re $iosrp fl tao 1 ;efpt ee ziAa* ・ ges fi* ・ es 7tsi ff** **betl:RF\ttMlt -) (*MSrkreJk# ・ v B A New Neritacean Limpet from a Hydrothermal Vent Site near Ogasawara Islands, Japan Takashi OKuTANI*, Hiroshi SAITo" and Jun HAsHIMOTO"" ('Tokyo University of Fisheries, 4-5-7 Konan, Minato-ku, Tokyo 108 and "* Japan Marine Scienee and Teehnology Center, Natsushima, Yokosuka 237) Abstract: A limpet eollected by the DSRV Shinkai-eOOO from a depth of 470m at a hydrothermal vent site in the Kaikata Seamount near Ogasawara Islands, Japan, represents a new taxon Shinkailepas kaikatensis, gen. et $p. nov., which belongs to the new Family Shinkailepadidae near the Family Phenaeolepadidae of the Neritacea (Archaeegastropoda). Introduction The recent rush of discoveries of new molluscan taxa from hydrothermal vent sites in the East Paeific has proved that these sites yield diverse new limpet species, genera, families and even superfamilies (McLean 1981, 1988a, 1988b, 1989). In contrast to this, the western Pacific gastropod fauna assoeiated with hydrothermal vents has not been well worked out up to this date, exeept a sole species, though not a limpet, Atviniconcha hessleri Okutani & Ohta, 1987. During one of the recent dives of the DSRV Shinkai-2000 of the Japan Marine Science and Techno]ogy Center in the waters near the Ogasawara (Bonin) Islands, an unusual limpet was discovered. This was not from a great depth but from the upper bathyal depth of 470 m on a western erator rirn of the Kaikata Caldera (KC Peak) central cone of the Kaikata Seamount (Fig. -
Vent Fauna in the Okinawa Trough 34 Hiromi Watanabe and Shigeaki Kojima
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Vent Fauna in the Okinawa Trough 34 Hiromi Watanabe and Shigeaki Kojima Abstract In deep-sea hydrothermal vent fields, faunal distribution is associated with geochemical environments generated by hydrothermal vent activity. The Okinawa Trough is located between the Eurasian Continent and the Ryukyu Arc, and is characterized by sediment- associated fauna associated with vents. In this chapter, the faunal distribution in hydrother- mal vent fields in the Okinawa Trough is summarized at inter- and intra-field levels, and its relationship with geochemical environments and species-specific ecologies is discussed. Although the zonation of sediment-associated fauna is not distinct, the fauna on rocky seabed can be categorized into four zones based on thermal conditions. Genetic connectiv- ity among conspecific populations in the Okinawa Trough appears to be common; further, a few faunal groups, such as tubeworms, show connectivity to regions outside of the Okinawa Trough. The faunal composition of vent communities in the Okinawa Trough has been categorized into three groups: the Minami-Ensei Knoll, Yoron Hole, and middle- southern Okinawa Trough. To determine more precisely the relationships between faunal composition and environmental factors in the Okinawa Trough vent fields, both generalized and vent-specific environmental factors should be measured simultaneously with quantita- tive faunal sampling for analyses. Keywords Biodiversity Connectivity Faunal similarity Zonation 34.1 Background Deep-sea hydrothermal vents are among the most flourishing deep-sea environments, due to the associated chemosyn- thetic bacterial productivity. The Okinawa Trough is a backarc basin located between the Eurasian continent and the Ryukyu island arc.