Xxxxxxxxxxxxxxxxxx-.Xx'xxxxx LIST of RESEARCH WORKERS on TRICHOPTERA (Continued from Ko
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HEXAPODA INSECTA Australia's Faunal Extinction Crisis Submission
SUPPORTING INFORMATION Table S3 Australian insects and allied invertebrates that have been listed under various conservation schedules, including State/Territory Acts, the EPBC Act and the IUCN Red List, and their occurrence in IBRA regions. Listed species Conservation status Conservation status Conservation status IBRA region (State) (various (EPBC Act 1999) (IUCN Red List 2017) State/Territory Acts) HEXAPODA INSECTA BLATTODEA Panesthia lata Walker, 1868, (Lord Howe Island Endangered PSI (NSW) Wood-feeding Cockroach) (Biodiversity Conservation Act 2016) COLEOPTERA Aulacopris matthewsi Storey, 1986 (Flightless Vulnerable WET (QLD) Dung Beetle) Castiarina insculpta (Carter, 1934) (Miena Jewel Endangered TCH (TAS) Beetle) (Threatened Species Protection Act 1995 Catadromus lacordairei Boisduval , 1835 (Green- Vulnerable FUR, TNM (TAS) lined Ground Beetle) (Threatened Species Protection Act 1995) Enchymus sp. nov. Pascoe, 1871 (Weldborough Rare (Threatened BEL (TAS) Forest Weevil) Species Protection Act 1995) Goedetrechus mendumae Moore, 1972 (Ida Bay Vulnerable TSR (TAS) Cave Beetle) (Threatened Species Protection Act 1995) Goedetrechus parallelus Moore, 1972 (Junee- Vulnerable TWE (TAS) Florentine Cave Beetle) (Threatened Species Protection Act 1995) Hoplogonus bornemisszai Bartolozzi, 1996 Endangered Critically Endangered BEL (TAS) (Bornemissza’s Stag Beetle) (Threatened Species Protection Act 1995 – TAS) Hoplogonus simsoni Parry, 1875 (Simsons Stag Vulnerable Vulnerable BEL, TCH (TAS) Beetle) (Threatened Species Protection Act 1995) Hoplogonus -
Genome Sequence of the Small Brown Planthopper, Laodelphax Striatellus
GigaScience, 6, 2017, 1–12 doi: 10.1093/gigascience/gix109 Advance Access Publication Date: 10 November 2017 Data Note DATA NOTE Genome sequence of the small brown planthopper, Laodelphax striatellus Junjie Zhu1,4,†,FengJiang2,†, Xianhui Wang1, Pengcheng Yang2, Yanyuan Bao 3, Wan Zhao1,WeiWang1, Hong Lu1, Qianshuo Wang1,NaCui1, Jing Li1, Xiaofang Chen1, Lan Luo1,JintingYu1, Le Kang1,2,∗ and Feng Cui1,∗ 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, 2Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China, 3State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China and 4University of Chinese Academy of Sciences, Beijing 100049, China ∗Correspondence address. Dr. Feng Cui, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Tel: +86-10-64807218; Fax: 86-10-64807099; E-mail: [email protected]; Dr. Le Kang, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Tel: +86-10-64807219; Fax: 86-10-64807099; E-mail: [email protected] †Equal contribution Abstract Background: Laodelphax striatellus Fallen´ (Hemiptera: Delphacidae) is one of the most destructive rice pests. L. striatellus is different from 2 other rice planthoppers with a released genome sequence, Sogatella furcifera and Nilaparvata lugens,inmany biological characteristics, such as host range, dispersal capacity, and vectoring plant viruses. Deciphering the genome of L. -
Estimating Time and Space in the Evolution of the Lepidoptera
Estimating time and space in the evolution of the Lepidoptera Rienk de Jong Several aspects of estimating what happened when and where in the evolution of the Lepidoptera are discussed. Because of their scarcity and often poor preservation, fossils are not very helpful, but at least they demonstrate that, in the Oligocene some taxa of butterflies, perhaps at tribal level or higher, did occur in the Northern as well as in the Southern Hemisphere. The concept of a molecular clock is seen as a most needed test for vicariance explanations of disjunct distributions. Special emphasis is laid on the importance of calibration of the clock. The use of geological vicariance events as calibration points is rejected, because of circularity when vicariance explanations are to be tested. Fossils as calibration points should ideally be replaced by the minimum age of an apomorphous character state demonstrated by the fossil rather than a supposed identity on the basis of overall similarity. Some conditions that directed the evolution of Lepidoptera (called constraints here) are discussed for their possible use as calibration points. Estimation of the evolution in space through time (palaeobiogeography) as found in recent literature is discussed, the often supposed role (of the break-up) of Gondwana in the evolution of the butterflies is challenged, and an alternative hypothesis is given. R. de Jong, National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected] Introduction extrapolate the data to far back in history and to Estimating time and space of events in the evolu- make use of (reputed) circumstantial evidence. -
Proposal for Wild Harvest and Export of Invertebrates Submitted for Approval Under the Environment Protection and Biodiversity Conservation Act 1999
27th April 2021 Proposal for Wild Harvest and Export of Invertebrates submitted for approval under the Environment Protection and Biodiversity Conservation Act 1999 1. Introduction In 1982, the applicants who recognised the full potential and value of the property to the initial establishing of their insect farming business purchased 80 acres of dense lowland rainforest. Areas of the property, prior to its purchase by the applicants, had been used for extractive processes such as a quarry and for logging. Other past activities that also affected the integrity of the property were cattle grazing and an attempt at establishing a deer farm. A total of 20 acres were clear felled to enable the cattle grazing and deer farming to occur. To assist recovery of the acreage, surveys were conducted and relevant areas for rehabilitation were identified and addressed. The past 30 years has seen an astounding proliferation of fauna numbers as well as an improvement of habitat for many species. Priority to land management is a key factor in the efficiency of the farm and its projects. Areas within the acreage have been identified and allocated to allow for the farm activities while maintaining the bulk of the acreage for non-business practices. Present operations are conducted on approximately 20 acres. This area lies within a section of the property, which was 75 years earlier totally cleared for cattle grazing and a typical example of regrowth rainforest. The property is listed under “Land for Wildlife” Queensland. This business has grown from what was initially established to operate as a breeding facility, catering to public demand for invertebrate specimens for use in research, education, natural history documentaries, personal interests and various other applications. -
Insect Transmission of Phony Peach Disease (By Willirun F
28 2 5 :; ~~12.8 111112.5 g~ 11111 . 11111 . 1.0 ~ = ~ ~!3,2 ~., !p.2 I .. III ~ .z I~ ~ I~ w ~ I:l ~ I~ tt U~ .0 ... " ... " 1.1 &:IL;.l 1.1 ",Il~ ... --~- ---, 111111.25 ""1.1.4 111111.6 111111.25 1111,1.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU Of STANDAROS·1963-A NATIONAL BUREAU OF STANDARDS·19&3·A • ~> Insect Transmission \of PHONY PEACH DISEASE l'.)~ ,-> tj t:r.i- (':i "'T'J t;j rr1 0 CD ~ 0- ~ 0 '"d co 00 • ~ C'" ==_. --' t-3 ~ -("'J c.." 0 <.D ~_. ~ r:::f' P-1 ~ ~ I-! '< Technical Bulletin No. 1193 UNITED STATES DEPARTMENT OF AGRICULTURE • CONTEN'PS Page • The disease____________ - _______________________________ _ 1 Vector research________________________________________ _ Surveys_______________________________________________ _ 3 4 Methods and equipment___________________. _________ _ 4 E).llansion of survey objectives______________________ _ ltecords___________________________________________ _ 4 4 Pr~gI'~ss ____ -: _____________________________________ _ ,5 TfansIDIsslOn studies _______________ ,. ___________________ .,_ 6 At Chattanooga.. ____________________________________ 6 At Fort Valley_____________________________________ _ i Vectors____________.________________________________ 8 ~;onvectol's ________________________________________ _ 10 Role of donors _________________________ .____________ _ 11 Oondition of test trees ______________________________ _ 14 Details of transmission ____________________ ~'=~ _______ _ 15 Acquisition feeding period___________________'________ -
Estimating Time and Space in the Evolution of the Lepidoptera
Estimating time and space in the evolution of the Lepidoptera Rienk de Jong Several aspects of estimating what happened when and where in the evolution of the Lepidoptera are discussed. Because of their scarcity and often poor preservation, fossils are not very helpful, but at least they demonstrate that, in the Oligocene some taxa of butterflies, perhaps at tribal level or higher, did occur in the Northern as well as in the Southern Hemisphere. The concept of a molecular clock is seen as a most needed test for vicariance explanations of disjunct distributions. Special emphasis is laid on the importance of calibration of the clock. The use of geological vicariance events as calibration points is rejected, because of circularity when vicariance explanations are to be tested. Fossils as calibration points should ideally be replaced by the minimum age of an apomorphous character state demonstrated by the fossil rather than a supposed identity on the basis of overall similarity. Some conditions that directed the evolution of Lepidoptera (called constraints here) are discussed for their possible use as calibration points. Estimation of the evolution in space through time (palaeobiogeography) as found in recent literature is discussed, the often supposed role (of the break-up) of Gondwana in the evolution of the butterflies is challenged, and an alternative hypothesis is given. R. de Jong, National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected] Introduction extrapolate the data to far back in history and to Estimating time and space of events in the evolu- make use of (reputed) circumstantial evidence. -
Genome Scaffolding and Annotation for the Pathogen Vector Ixodes Ricinus by Ultra-Long Single Molecule Sequencing Wibke J
Cramaro et al. Parasites & Vectors (2017) 10:71 DOI 10.1186/s13071-017-2008-9 RESEARCH Open Access Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing Wibke J. Cramaro1, Oliver E. Hunewald1, Lesley Bell-Sakyi2 and Claude P. Muller1* Abstract Background: Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19. Results: 235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick’sNorthAmericanrelative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. -
A Review of Red-Eye Pigmentation and Diel Activity Patterns in Skippers (Lepidoptera, Papilionoidea, Hesperiidae)
Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: https://www.tandfonline.com/loi/tnah20 A review of red-eye pigmentation and diel activity patterns in skippers (Lepidoptera, Papilionoidea, Hesperiidae) Emmanuel F. A. Toussaint & Andrew D. Warren To cite this article: Emmanuel F. A. Toussaint & Andrew D. Warren (2019) A review of red-eye pigmentation and diel activity patterns in skippers (Lepidoptera, Papilionoidea, Hesperiidae), Journal of Natural History, 53:35-36, 2165-2181, DOI: 10.1080/00222933.2019.1692090 To link to this article: https://doi.org/10.1080/00222933.2019.1692090 Published online: 29 Nov 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tnah20 JOURNAL OF NATURAL HISTORY 2019, VOL. 53, NOS. 35–36, 2165–2181 https://doi.org/10.1080/00222933.2019.1692090 A review of red-eye pigmentation and diel activity patterns in skippers (Lepidoptera, Papilionoidea, Hesperiidae) Emmanuel F. A. Toussainta and Andrew D. Warrenb aNatural History Museum of Geneva, Geneva, Switzerland; bFlorida Museum of Natural History, University of Florida, Gainesville, FL, USA ABSTRACT ARTICLE HISTORY The visual systems and diel activity patterns of butterflies and Received 28 May 2019 moths have been studied for decades, yet understanding the Accepted 5 November 2019 underlying mechanisms that are associated with the evolution of KEYWORDS these remains a major challenge. The order Lepidoptera is princi- Butterfly vision; convergent pally composed of nocturnal lineages with extreme morphological evolution; Hesperiidae; and behavioural adaptations to this lifestyle. -
SI Appendix to "Genomes of Skipper Butterflies Reveal Extensive
SI Appendix to "Genomes of skipper butterflies reveal extensive convergence of wing patterns" by Wenlin Li, Qian Cong, Jinhui Shen, Jing Zhang, Winnie Hallwachs, Daniel H. Janzen and Nick V. Grishin Published in the Proceedings of the National Academy of Sciences of the United States of America (Online ISSN 1091-6490) on March 15, 2019 as part of the article "Genomes of skipper butterflies reveal extensive convergence of wing patterns" and archived together with it. ZooBank registration for this work is 8A8E82C4-AC8A-4B7B-8DF4-6BFF4BD48F3D. Table of Contents Taxonomic Appendix .................................................................................................................................... 3 T1. Taxonomic Abstract ................................................................................................................................ 3 T2. Subfamilies, tribes and subtribes in the family Hesperiidae ................................................................... 6 T3. New tribes and subtribes described in Table 1 ....................................................................................... 8 T4. New genera and subgenera described in Table 2 ................................................................................... 9 T5. Systematic list of Eudaminae proposed in this work ............................................................................ 10 T6. Systematic list of Eudaminae prior to this publication ......................................................................... 28 T7. New -
Slow Italian, Fast Learning Episode 118: Rare Prehistoric Fossil Found in Northern Territory
Slow Italian, Fast Learning Episode 118: Rare prehistoric fossil found in Northern Territory Italian English Nel cuore del Northern Territory si trova il Deep in the heart of the Northern Territory bacino dell'Amadeus. lies the Amadeus Basin. Si estende per 170.000 chilometri quadrati Stretching 170,000 square kilometres attraverso il deserto centrale e sconfina across the central desert and extending nel Western Australia. I locali lo into Western Australia, locals know it as a conoscono come una miniera d'oro per gold mine for ancient treasures - including antichi tesori, tra cui alcune delle scoperte some of the world’s rarest fossil di fossili più rari al mondo. discoveries. “To a geologist or a palaeontologist …it’s “To a geologist or a palaeontologist …it’s a bit like a lolly shop so it’s a case of you a bit like a lolly shop so it’s a case of you know what colour jelly bean do I want know what colour jelly bean do I want today alright I’ll go look for an arthropod today alright I’ll go look for an arthropod in this area and see how it pans out.” in this area and see how it pans out.” È qui che il cacciatore di fossili amatoriale It was here, amateur fossil hunter Patrick Patrick Nelson ha fatto quella che Nelson made what could be a major potrebbe essere una grande scoperta scientific discovery. scientifica. “I went out one weekend for a day trip “I went out one weekend for a day trip with a bit of an idea that there might be with a bit of an idea that there might be some sort of evidence of ancient life in some sort of evidence -
Or Plecoptera, of Illinois
STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION DIVISION OF THE NATURAL HISTORY SURVEY STEPHEN A. FORBES, Chief Vol. XVIII. BULLETIN Article 11. Fall and Winter Stoneflies, or Plecoptera, of Illinois BY THEODORE H. PRISON PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS May, 1929 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION A. M. Shelton, Director BOARD OF NATURAL RESOURCES AND CONSERVATION A. M. Shi:i,tox, Chairman WiLLi.\>[ Tkki.ease, Biology John W. Alvord, Engineering Hknky C. C()\vi-es, Forestry Charles M. Thompson, Representijig Eiiso.x S. Bastix, Geology the President of the University of Wii.i.iAM A. Notes, Chemistry Illinois THE NATURAL HISTORY SURVEY DIVISION Stepheix a. Forbes, Chief H. C. Oesteri.ing, Editor G^^^ ScHNEPP & Barnes, Printep.s Springfield, III. 1929 1438S— 1200 i CONTENTS Page Introduct ion 345 Summary 347 Acknowledgments 349 Biology 351 Seasonal adjustments 351 Habitat preferences 355 Habits of the adults 359 Feeding 359 Mating 361 Oviposition 361 Miscellaneous adjustments 364 Rearing 365 Habits of the nymphs 365 Feeding 365 Emergence 367 Development 367 Movements 368 Enemies 369 Taxonomy and nomenclature 370 Taeniopteryx Pictet 372 Brachyptera Newport 373 Taenionema Banks 373 Strophopteryx new genus 374 Keys to the genera 375 Keys to the species, with descriptions of new species and nymphs 376 Taeniopteryx Pictet 376 Strophopteryx new genus 384 Allocapnia Claassen 388 Leuctra Stephens 404 Capnia Pictet 407 Bibliography 408 Fig. 1. View of a small brook (Station IV) two miles south of Oakwood, Illi- nois. Habitat of two species of fall and winter stoneflies, Allocapnia recta (Claassen) and .1. -
Birds, Butterflies and Flowers in the Tropics Are Not More Colourful Than
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015) bs_bs_banner RESEARCH Birds, butterflies and flowers in the PAPERS tropics are not more colourful than those at higher latitudes Rhiannon L. Dalrymple1*, Darrell J. Kemp2,HabacucFlores-Moreno1,3, Shawn W. Laffan4,ThomasE.White2, Frank A. Hemmings5, Marianne L. Tindall1 and Angela T. Moles1 1Evolution and Ecology Research Centre, ABSTRACT School of Biological, Earth and Environmental Aim The idea that species are generally more colourful at tropical latitudes has Sciences, UNSW Australia, Sydney, NSW 2052, Australia, 2Department of Biological held great appeal among biologists since the days of exploration by early naturalists. Sciences, Faculty of Science and Engineering, However, advances in colour quantification and analysis only now allow an objec- Macquarie University, Sydney, NSW 2109, tive test of this idea. We provide the first quantitative analysis of the latitudinal Australia, 3Department of Ecology, Evolution, gradient in colour on a broad scale using data from both animals and plants, and Behavior, University of Minnesota, St encompassing both human-visible and ultraviolet colours. 4 Paul, MN 55108, USA, Centre for Ecosystem Location Australia. Science, School of Biological, Environmental and Earth Sciences, UNSW Australia, Sydney, Methods We collected spectral reflectance data from 570 species or subspecies of NSW 2052, Australia, 5John T. Waterhouse birds, adult forms of 424 species or subspecies of butterflies and the flowers of 339 Herbarium, School of Biological, Earth and species of plants, from latitudes ranging from tropical forests and savannas at Environmental Sciences, UNSW Australia, 9.25° S, to temperate forests and heathlands at 43.75° S. Colour patch saturation, Sydney, NSW 2052, Australia maximum contrast between patches, colour diversity and hue disparity between patches were calculated for all species.