OFDM) and Advanced Signal Processing for Elastic Optical Networking in Accordance with Networking and Transmission Constraints

Total Page:16

File Type:pdf, Size:1020Kb

OFDM) and Advanced Signal Processing for Elastic Optical Networking in Accordance with Networking and Transmission Constraints Implementation of Orthogonal Frequency Division Multiplexing (OFDM) and Advanced Signal Processing for Elastic Optical Networking in Accordance with Networking and Transmission Constraints Item Type text; Electronic Dissertation Authors Johnson, Stanley Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 09/10/2021 15:31:10 Link to Item http://hdl.handle.net/10150/612584 IMPLEMENTATION OF ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) AND ADVANCED SIGNAL PROCESSING FOR ELASTIC OPTICAL NETWORKING IN ACCORDANCE WITH NETWORKING AND TRANSMISSION CONSTRAINTS by Stanley Johnson _____________________ Copyright © Stanley Johnson 2016 A Dissertation Submitted to the Faculty of the COLLEGE OF OPTICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 1 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Stanley Johnson, titled Implementation of Orthogonal Frequency Division Multiplexing (OFDM) and Advanced Signal Processing for Elastic Optical Networking in Accordance with Networking and Transmission Constraints and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. th _______________________________________________________________________ Date: April 14 , 2016 Milorad Cvijetic th _______________________________________________________________________ Date: April 14 , 2016 Ivan Djordjevic th _______________________________________________________________________ Date: April 14 , 2016 Yuzuru Takashima Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. th _______________________________________________________________________ Date: April 14 , 2016 Dissertation Director: Milorad Cvijetic 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. SIGNED: Stanley Johnson 4 ACKNOWLEDGEMENTS I have been fortunate to work with several wonderful individuals, both prior to and during my graduate studies. In many ways, this dissertation is a result of their help and support. I wish to thank: Dr. Milorad Cvijetic, my academic advisor, for his guidance and support. His patience and insights have been very important in enabling my research. Dr. Ivan Djordjevic and Dr. Yuzuru Takashima for their guidance during the preparation of this dissertation. Dr. Franko Kueppers, my former advisor, for giving me my very first research opportunity and for his motivation and encouragement. The National Science Foundation Center for Integrated Access Networks (NSF-CIAN) for funding a major portion of the research in this dissertation. Dr. Carl Maes for his support, encouragement and for sharing his perspective on the nature of light. Dr. Stanley Pau for giving me the opportunity to work in his research group. Dr. John Wissinger, Dr. Jun He and Dr. Daniel Kilper, research collaborators, for a wonderful research experience. Weiyang Mo, CIAN colleague, for his collaboration on: (a) the experiment described in Chapter 2 of this dissertation, specifically for his work on setting up the software defined networking control plane and (b) the experiment described in Chapter 4 of this dissertation, specifically for his work on setting up the optical network for the experiment and for the measurement of the control latencies. Mingwei Yang, CIAN colleague, for his collaboration on the experiment described in Chapter 4 of this dissertation, specifically for his work on building the field programmable gate array based distributed control hardware. Wenbo Gao, Dr. Yequn Zhang, Dr. Houman Rastegarfar, Likun Lin, Dr. Atiyah Ahsan, Aytekin Ozdemir, Dr. Earl Parsons and Dr. Hacene Chaouch, my current and former research colleagues, for enriching my research experience. Dr. Masud Mansuripur and Dr. Brian Anderson, for their creative and intuitive methods of teaching. Dr. Vaibhav Bora, Dr. Anoop George and Dr. A. K. Jha, my friends, for their ever-present help and support. 5 ACKNOWLEDGEMENTS -- Continued Hector Garcia and Ashley Bidegain, for their excellent support that enabled my experimental work. Shri. M. J. Khurjekar, my teacher during my undergraduate studies, for his advice, motivation and for recommending me for graduate studies. Abraham T. Joy, Prasad Prabhughate and Krunal Patil, former supervisors and mentors, for their recommendations and their support. I have also been fortunate to have a wonderfully supportive family, and I wish to thank: P. V. Abraham, Arun Thomas, Annie Thomas, Sibi Abraham, Binu Mathew and Vincy Mathew, my relatives, for going out of their way to make my stay in an initially unfamiliar country a pleasant experience. Roy Mammen, my uncle, and Dr. Reny Roy, my aunt, for their motivation, help and support in enabling my graduate studies. Joy Mathew and Saly Joy, my parents-in-law, and Ashna Joy, my sister-in-law, for their support. Thank you Pappa! Thank you Mummy! Thank you Unni! P. K. Samuel, my grandfather, for his affection and for helping to expand my view of the world through countless discussions on various subjects. Thank you Appacha! M. J. Joseph and Marykutty Joseph, my grandparents, for their affection, support and encouragement. Thank you Pappa! Thank you Ammachi! James Johnson, my brother, for his support over all these years. Thank you Princy! Johnson Samuel, my father, for always being a patient teacher and guide and for his ever- present support. Thank you Daddy! Saji Johnson, my mother, for her guidance, patience and effort towards enabling my studies and for being with me every step of this journey. Thank you Mummy! Diana Joy, my wife, for her patience, understanding and encouragement. Thank you Di! 6 DEDICATION Dedicated to my parents and grandparents 7 TABLE OF CONTENTS List of Figures ............................................................................................................................ 10 List of Tables ............................................................................................................................. 14 Abstract ...................................................................................................................................... 15 1: Introduction .......................................................................................................................... 17 1.1 Telecommunication: A brief history and current trends .............................................. 17 1.2 Trends in DSP for optical fiber telecommunication .................................................... 19 1.3 Introduction to OFDM ................................................................................................. 21 1.4 Overview of the dissertation ........................................................................................ 26 2: Real-time elastic transmission with direct detection OFDM ............................................... 28 2.1 Introduction .................................................................................................................. 28 2.2 FPGA architecture for direct detection OFDM ........................................................... 29 2.3 Proposed real-time elastic resource allocation scheme ................................................ 34 2.4 Experiment setup ......................................................................................................... 35 2.5 Results .......................................................................................................................... 37 2.6 FPGA utilization .......................................................................................................... 39 2.7 Energy efficiency calculations ..................................................................................... 41 2.8 Conclusions .................................................................................................................. 44 3: Unified direct and coherent detection OFDM optical transmission scheme ....................... 45 3.1 Introduction .................................................................................................................. 45 3.2 The unified Tx concept ................................................................................................ 46 3.3 FPGA architecture for coherent detection OFDM ....................................................... 49 8 TABLE OF CONTENTS – Continued 3.4 Experimental demonstration of the unified
Recommended publications
  • UNIT V- SPREAD SPECTRUM MODULATION Introduction
    UNIT V- SPREAD SPECTRUM MODULATION Introduction: Initially developed for military applications during II world war, that was less sensitive to intentional interference or jamming by third parties. Spread spectrum technology has blossomed into one of the fundamental building blocks in current and next-generation wireless systems. Problem of radio transmission Narrow band can be wiped out due to interference. To disrupt the communication, the adversary needs to do two things, (a) to detect that a transmission is taking place and (b) to transmit a jamming signal which is designed to confuse the receiver. Solution A spread spectrum system is therefore designed to make these tasks as difficult as possible. Firstly, the transmitted signal should be difficult to detect by an adversary/jammer, i.e., the signal should have a low probability of intercept (LPI). Secondly, the signal should be difficult to disturb with a jamming signal, i.e., the transmitted signal should possess an anti-jamming (AJ) property Remedy spread the narrow band signal into a broad band to protect against interference In a digital communication system the primary resources are Bandwidth and Power. The study of digital communication system deals with efficient utilization of these two resources, but there are situations where it is necessary to sacrifice their efficient utilization in order to meet certain other design objectives. For example to provide a form of secure communication (i.e. the transmitted signal is not easily detected or recognized by unwanted listeners) the bandwidth of the transmitted signal is increased in excess of the minimum bandwidth necessary to transmit it.
    [Show full text]
  • CS647: Advanced Topics in Wireless Networks Basics
    CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission Part II Drs. Baruch Awerbuch & Amitabh Mishra Computer Science Department Johns Hopkins University CS 647 2.1 Antenna Gain For a circular reflector antenna G = η ( π D / λ )2 η = net efficiency (depends on the electric field distribution over the antenna aperture, losses such as ohmic heating , typically 0.55) D = diameter, thus, G = η (π D f /c )2, c = λ f (c is speed of light) Example: Antenna with diameter = 2 m, frequency = 6 GHz, wavelength = 0.05 m G = 39.4 dB Frequency = 14 GHz, same diameter, wavelength = 0.021 m G = 46.9 dB * Higher the frequency, higher the gain for the same size antenna CS 647 2.2 Path Loss (Free-space) Definition of path loss LP : Pt LP = , Pr Path Loss in Free-space: 2 2 Lf =(4π d/λ) = (4π f cd/c ) LPF (dB) = 32.45+ 20log10 fc (MHz) + 20log10 d(km), where fc is the carrier frequency This shows greater the fc, more is the loss. CS 647 2.3 Example of Path Loss (Free-space) Path Loss in Free-space 130 120 fc=150MHz (dB) f f =200MHz 110 c f =400MHz 100 c fc=800MHz 90 fc=1000MHz 80 Path Loss L fc=1500MHz 70 0 5 10 15 20 25 30 Distance d (km) CS 647 2.4 Land Propagation The received signal power: G G P P = t r t r L L is the propagation loss in the channel, i.e., L = LP LS LF Fast fading Slow fading (Shadowing) Path loss CS 647 2.5 Propagation Loss Fast Fading (Short-term fading) Slow Fading (Long-term fading) Signal Strength (dB) Path Loss Distance CS 647 2.6 Path Loss (Land Propagation) Simplest Formula: -α Lp = A d where A and
    [Show full text]
  • 3 Characterization of Communication Signals and Systems
    63 3 Characterization of Communication Signals and Systems 3.1 Representation of Bandpass Signals and Systems Narrowband communication signals are often transmitted using some type of carrier modulation. The resulting transmit signal s(t) has passband character, i.e., the bandwidth B of its spectrum S(f) = s(t) is much smaller F{ } than the carrier frequency fc. S(f) B f f f − c c We are interested in a representation for s(t) that is independent of the carrier frequency fc. This will lead us to the so–called equiv- alent (complex) baseband representation of signals and systems. Schober: Signal Detection and Estimation 64 3.1.1 Equivalent Complex Baseband Representation of Band- pass Signals Given: Real–valued bandpass signal s(t) with spectrum S(f) = s(t) F{ } Analytic Signal s+(t) In our quest to find the equivalent baseband representation of s(t), we first suppress all negative frequencies in S(f), since S(f) = S( f) is valid. − The spectrum S+(f) of the resulting so–called analytic signal s+(t) is defined as S (f) = s (t) =2 u(f)S(f), + F{ + } where u(f) is the unit step function 0, f < 0 u(f) = 1/2, f =0 . 1, f > 0 u(f) 1 1/2 f Schober: Signal Detection and Estimation 65 The analytic signal can be expressed as 1 s+(t) = − S+(f) F 1{ } = − 2 u(f)S(f) F 1{ } 1 = − 2 u(f) − S(f) F { } ∗ F { } 1 The inverse Fourier transform of − 2 u(f) is given by F { } 1 j − 2 u(f) = δ(t) + .
    [Show full text]
  • Demodulation of Chaos Phase Modulation Spread Spectrum Signals Using Machine Learning Methods and Its Evaluation for Underwater Acoustic Communication
    sensors Article Demodulation of Chaos Phase Modulation Spread Spectrum Signals Using Machine Learning Methods and Its Evaluation for Underwater Acoustic Communication Chao Li 1,2,*, Franck Marzani 3 and Fan Yang 3 1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China 2 University of Chinese Academy of Sciences, Beijing 100190, China 3 LE2I EA7508, Université Bourgogne Franche-Comté, 21078 Dijon, France; [email protected] (F.M.); [email protected] (F.Y.) * Correspondence: [email protected] Received: 25 September 2018; Accepted: 28 November 2018; Published: 1 December 2018 Abstract: The chaos phase modulation sequences consist of complex sequences with a constant envelope, which has recently been used for direct-sequence spread spectrum underwater acoustic communication. It is considered an ideal spreading code for its benefits in terms of large code resource quantity, nice correlation characteristics and high security. However, demodulating this underwater communication signal is a challenging job due to complex underwater environments. This paper addresses this problem as a target classification task and conceives a machine learning-based demodulation scheme. The proposed solution is implemented and optimized on a multi-core center processing unit (CPU) platform, then evaluated with replay simulation datasets. In the experiments, time variation, multi-path effect, propagation loss and random noise were considered as distortions. According to the results, compared to the reference algorithms, our method has greater reliability with better temporal efficiency performance. Keywords: underwater acoustic communication; direct sequence spread spectrum; chaos phase modulation sequence; partial least square regression; machine learning 1. Introduction The underwater acoustic communication has always been a crucial research topic [1–6].
    [Show full text]
  • 2 the Wireless Channel
    CHAPTER 2 The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter. A defining characteristic of the mobile wireless channel is the variations of the channel strength over time and over frequency. The variations can be roughly divided into two types (Figure 2.1): • Large-scale fading, due to path loss of signal as a function of distance and shadowing by large objects such as buildings and hills. This occurs as the mobile moves through a distance of the order of the cell size, and is typically frequency independent. • Small-scale fading, due to the constructive and destructive interference of the multiple signal paths between the transmitter and receiver. This occurs at the spatialscaleoftheorderofthecarrierwavelength,andisfrequencydependent. We will talk about both types of fading in this chapter, but with more emphasis on the latter. Large-scale fading is more relevant to issues such as cell-site planning. Small-scale multipath fading is more relevant to the design of reliable and efficient communication systems – the focus of this book. We start with the physical modeling of the wireless channel in terms of elec- tromagnetic waves. We then derive an input/output linear time-varying model for the channel, and define some important physical parameters. Finally, we introduce a few statistical models of the channel variation over time and over frequency. 2.1 Physical modeling for wireless channels Wireless channels operate through electromagnetic radiation from the trans- mitter to the receiver.
    [Show full text]
  • Continuous Phase Modulation with Faster-Than-Nyquist Signaling for Channels with 1-Bit Quantization and Oversampling at the Receiver Rodrigo R
    1 Continuous Phase Modulation With Faster-than-Nyquist Signaling for Channels With 1-bit Quantization and Oversampling at the Receiver Rodrigo R. M. de Alencar, Student Member, IEEE, and Lukas T. N. Landau, Member, IEEE, Abstract—Continuous phase modulation (CPM) with 1-bit construction of zero-crossings. The proposed CPM waveform quantization at the receiver is promising in terms of energy conveys the same information per time interval as the common and spectral efficiency. In this study, CPM waveforms with CPFSK while its bandwidth can be the same and even lower. symbol durations significantly shorter than the inverse of the signal bandwidth are proposed, termed faster-than-Nyquist CPM. Referring to the high signaling rate, like it is typical for faster- This configuration provides a better steering of zero-crossings than-Nyquist signaling [9], the novel waveform is termed as compared to conventional CPM. Numerical results confirm a faster-than-Nyquist continuous phase modulation (FTN-CPM). superior performance in terms of BER in comparison with state- Numerical results confirm that the proposed waveform yields of-the-art methods, while having the same spectral efficiency and a significantly reduced bit error rate (BER) as compared to a lower oversampling factor. Moreover, the new waveform can be detected with low-complexity, which yields almost the same the existing methods [7], [6] with at least the same spectral performance as using the BCJR algorithm. efficiency. In addition, FTN-CPM can be detected with low- complexity and with a lower effective oversampling factor in Index Terms—1-bit quantization, oversampling, continuous phase modulation, faster-than-Nyquist signaling.
    [Show full text]
  • The Future of Passive Multiplexing & Multiplexing Beyond
    The Future of Passive Multiplexing & Multiplexing Beyond 10G From 1G to 10G was easy But Beyond 10G? 1G CWDM/DWDM 10G CWDM/DWDM 25G 40G Dark Fiber Passive Multiplexer 100G ? 400G Ingredients for Multiplexing 1) Dark Fiber 2) Multiplexers 3) Light : Transceivers Ingredients for Multiplexing 1) Dark Fiber 2 Multiplexer 3 Light + Transceiver Dark Fiber Attenuation → 0 km → → 40 km → → 80 km → Dispersion → 0 km → → 40 km → → 80 km → Dark Fiber Dispersion @1G DWDM max 200km → 0 km → → 40 km → → 80 km → @10G DWDM max 80km → 0 km → → 40 km → → 80 km → @25G DWDM max 15km → 0 km → → 40 km → → 80 km → Dark Fiber Attenuation → 80 km → 1310nm Window 1550nm/DWDM Dispersion → 80 km → Ingredients for Multiplexing 1 Dark FiBer 2) Multiplexers 3 Light + Transceiver Passive Mux Multiplexers 2 types • Cascaded TFF • AWG 95% of all Communication -Larger Multiplexers such as 40Ch/96Ch Multiplexers TFF: Thin film filter • Metal or glass tuBes 2cm*4mm • 3 fiBers: com / color / reflect • Each tuBe has 0.3dB loss • 95% of Muxes & OADM Multiplexers ABS casing Multiplexers AWG: arrayed wave grading -Larger muxes such as 40Ch/96Ch -Lower loss -Insertion loss 40ch = 3.0dB DWDM33 Transmission Window AWG Gaussian Fit Attenuation DWDM33 Low attenuation Small passband Reference passBand DWDM33 Isolation Flat Top Higher attenuation Wide passband DWDM light ALL TFF is Flat top Transmission Wave Types Flat Top: OK DWDM 10G Coherent 100G Gaussian Fit not OK DWDM PAM4 Ingredients for Multiplexing 1 Dark FiBer 2 Multiplexer 3) Light: Transceivers ITU Grids LWDM DWDM CWDM Attenuation
    [Show full text]
  • Performance Evaluation of Power-Line Communication Systems for LIN-Bus Based Data Transmission
    electronics Article Performance Evaluation of Power-Line Communication Systems for LIN-Bus Based Data Transmission Martin Brandl * and Karlheinz Kellner Department of Integrated Sensor Systems, Danube University, 3500 Krems, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-2732-893-2790 Abstract: Powerline communication (PLC) is a versatile method that uses existing infrastructure such as power cables for data transmission. This makes PLC an alternative and cost-effective technology for the transmission of sensor and actuator data by making dual use of the power line and avoiding the need for other communication solutions; such as wireless radio frequency communication. A PLC modem using DSSS (direct sequence spread spectrum) for reliable LIN-bus based data transmission has been developed for automotive applications. Due to the almost complete system implementation in a low power microcontroller; the component cost could be radically reduced which is a necessary requirement for automotive applications. For performance evaluation the DSSS modem was compared to two commercial PLC systems. The DSSS and one of the commercial PLC systems were designed as a direct conversion receiver; the other commercial module uses a superheterodyne architecture. The performance of the systems was tested under the influence of narrowband interference and additive Gaussian noise added to the transmission channel. It was found that the performance of the DSSS modem against singleton interference is better than that of commercial PLC transceivers by at least the processing gain. The performance of the DSSS modem was at least 6 dB better than the other modules tested under the influence of the additive white Gaussian noise on the transmission channel at data rates of 19.2 kB/s.
    [Show full text]
  • Passband Data Transmission I Introduction in Digital Passband
    Passband Data Transmission I References Phase-shift keying Chapter 4.1-4.3, S. Haykin, Communication Systems, Wiley. J.1 Introduction In baseband pulse transmission, a data stream represented in the form of a discrete pulse-amplitude modulated (PAM) signal is transmitted over a low- pass channel. In digital passband transmission, the incoming data stream is modulated onto a carrier with fixed frequency and then transmitted over a band-pass channel. J.2 1 Passband digital transmission allows more efficient use of the allocated RF bandwidth, and flexibility in accommodating different baseband signal formats. Example Mobile Telephone Systems GSM: GMSK modulation is used (a variation of FSK) IS-54: π/4-DQPSK modulation is used (a variation of PSK) J.3 The modulation process making the transmission possible involves switching (keying) the amplitude, frequency, or phase of a sinusoidal carrier in accordance with the incoming data. There are three basic signaling schemes: Amplitude-shift keying (ASK) Frequency-shift keying (FSK) Phase-shift keying (PSK) J.4 2 ASK PSK FSK J.5 Unlike ASK signals, both PSK and FSK signals have a constant envelope. PSK and FSK are preferred to ASK signals for passband data transmission over nonlinear channel (amplitude nonlinearities) such as micorwave link and satellite channels. J.6 3 Classification of digital modulation techniques Coherent and Noncoherent Digital modulation techniques are classified into coherent and noncoherent techniques, depending on whether the receiver is equipped with a phase- recovery circuit or not. The phase-recovery circuit ensures that the local oscillator in the receiver is synchronized to the incoming carrier wave (in both frequency and phase).
    [Show full text]
  • MODEM Revision
    ELEC3203 Digital Coding and Transmission – MODEM S Chen MODEM Revision - Non-dispersive Channel Burget: Bit rate:Rb [bps] clock fs carrier fc pulse b(k) x(k) x(t) bits / pulse Tx filter s(t) modulator fc symbols generator GTx (f) Bp and power clock carrier channel recovery recovery G c (f) b(k)^ x(k)^ x(t)^ symbols / sampler / Rx filter s(t)^ AWGN demodulat + bits decision GRx (f) n(t) digital baseband analogue RF passband analogue • Information theory underpins every components of MODEM • Given bit rate Rb [bps] and resource of channel bandwidth Bp and power budget – Select a modulation scheme (bits to symbols map) so that symbol rate can fit into required baseband bandwidth of B = Bp/2 and signal power can met power budget – Pulse shaping ensures bandwidth constraint is met and maximizes receive SNR – At transmitter, baseband signal modulates carrier so transmitted signal is in required channel – At receiver, incoming carrier phase must be recovered to demodulate it, and timing must be recovered to correctly sampling demodulated signal 94 ELEC3203 Digital Coding and Transmission – MODEM S Chen MODEM Revision - Dispersive Channel • For dispersive channel, equaliser at receiver aims to make combined channel/equaliser a Nyquist system again + = bandwidth bandwidth channel equaliser combined – Design of equaliser is a trade off between eliminating ISI and not enhancing noise too much • Generic framework of adaptive equalisation with training and decision-directed modes n[k] x[k] y[k] f[k] x[k−k^ ] Σ equaliser decision d channel circuit − Σ
    [Show full text]
  • Analysis of the PAPR Behavior of the OFDM Passband Signal
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2019 doi:10.20944/preprints201912.0255.v1 Article Analysis of the PAPR Behavior of the OFDM Passband Signal Frank Andrés Eras 0000-0002-7844-5670, Italo Alexander Carreño, Thomas Borja, Diego Javier Reinoso* 0000-0003-0854-1250, Luis Felipe Urquiza 0000-0002-6405-2067, Martha Cecilia Paredes 0000-0001-5789-4568 Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional * Correspondence: [email protected] 1 Abstract: Orthogonal Frequency Division Multiplexing (OFDM) is a technique widely used in today’s 2 wireless communication systems due to its ability to combat the effects of multi-path in the signal. 3 However, one of the main limitations of the use of OFDM is its high Peak-to-Average Power Ratio 4 (PAPR), which reduces the efficiency of the OFDM system. The effects of PAPR can produce both 5 out-of-band and in-band radiation, which degrades the signal by increasing the bit error rate (BER), 6 this occurs in both baseband and bandpass sginals. In this document the effect of the PAPR in a 7 OFDM passband signal is analyzed considering the implementation of a High Power Amplifier (HPA) 8 and the Simple Amplitude Predistortion-Orthogonal Pilot Sequences (OPS-SAP) scheme to reduce 9 the PAPR. 10 Keywords: OFDM; PAPR; passband; IEEE 802.11p 11 1. Introduction 12 For some years, many wireless communication systems have based the transmission of 13 information on the Orthogonal Frequency Division Multiplexing (OFDM) scheme, which is used 14 in standards such as Long-Term Evolution (LTE), Wireless Local Area Networks (WLAN), Digital 15 Video Broadcasting (DVB-T), among others.
    [Show full text]
  • Digital Phase Modulation: a Review of Basic Concepts
    Digital Phase Modulation: A Review of Basic Concepts James E. Gilley Chief Scientist Transcrypt International, Inc. [email protected] August , Introduction The fundamental concept of digital communication is to move digital information from one point to another over an analog channel. More specifically, passband dig- ital communication involves modulating the amplitude, phase or frequency of an analog carrier signal with a baseband information-bearing signal. By definition, fre- quency is the time derivative of phase; therefore, we may generalize phase modula- tion to include frequency modulation. Ordinarily, the carrier frequency is much greater than the symbol rate of the modulation, though this is not always so. In many digital communications systems, the analog carrier is at a radio frequency (RF), hundreds or thousands of MHz, with information symbol rates of many megabaud. In other systems, the carrier may be at an audio frequency, with symbol rates of a few hundred to a few thousand baud. Although this paper primarily relies on examples from the latter case, the concepts are applicable to the former case as well. Given a sinusoidal carrier with frequency: fc , we may express a digitally-modulated passband signal, S(t), as: S(t) A(t)cos(2πf t θ(t)), () = c + where A(t) is a time-varying amplitude modulation and θ(t) is a time-varying phase modulation. For digital phase modulation, we only modulate the phase of the car- rier, θ(t), leaving the amplitude, A(t), constant. BPSK We will begin our discussion of digital phase modulation with a review of the fun- damentals of binary phase shift keying (BPSK), the simplest form of digital phase modulation.
    [Show full text]