Maunakea Observatories

Total Page:16

File Type:pdf, Size:1020Kb

Maunakea Observatories MAUNAKEA OBSERVATORIES Astronomy Educators in the Community 2021(*virtually) Alexis Ann Acohido EAO/JCMT Andy Adamson NSF’s NOIRLab/Gemini Observatory Virginia Aragon-Barnes Canada-France Hawaii Telescope Jennifer Baer NASA Ames Research Center Christoph Baranec UH Institute for Astronomy Tishanna Ben National Solar Observatory/DKIST Vanshree Bhalotia UH-Manoa Physics & Astronomy Devin Chu UCLA Kathy Cooksey UH-Hilo Physics & Astronomy Callie Crowder Canada-France-Hawaii Telescope Sandra Dawson Thirty Meter Telescope Brian Day NASA SSERVI Jessica Dempsey EAO/JCMT Jerry Dobek Northwestern Michigan College Xinnan Du TMT International Observatory/UC Riverside Angelic Ebbers NSF’s NOIRLab/Gemini Observatory Kyla Edison PISCES Amy Fagan Western Carolina University Jocelyn Ferrara NSF’s NOIRLab/Gemini Observatory Sco Fisher University of Oregon Tom Geballe NSF’s NOIRLab/Gemini Observatory Kristina Gibbs NASA SSERVI Jeff Goldstein NCESSE Richard Griffi ths UH-Hilo Physics & Astronomy Olivier Guyon Subaru Telescope John Hamilton UH-Hilo Physics & Astronomy Janice Harvey NSF’s NOIRLab/Gemini Observatory Saeko S. Hayashi TMT Japan Project & Subaru Telescope Stephanie Henry NASA Marshall Space Flight Center Russell Kackley Subaru Telescope Carolyn Kaichi UH Institute for Astronomy Yuko Kakazu TMT Japan Project & Subaru Telescope Markus Kissler-Patig ESO & LMU Munich Scot Kleinman NSF’s NOIRLab/Gemini Observatory David Kring NASA SSERVI Preethi Krishnamoorthy Subaru Telescope Mary Beth Laychak Canada-France-Hawaii Telescope Lars Lindberg Christensen NSF’s NOIRLab/Gemini Observatory Jennifer Lotz NSF’s NOIRLab/Gemini Observatory Alyssa Lozi NSF’s NOIRLab/Gemini Observatory Julien Lozi Subaru Telescope Nadine Manset Canada-France-Hawaii Telescope Jameeka Marshall NSF’s NOIRLab/Gemini Observatory Callie Matulonis EAO/JCMT Peter Michaud NSF’s NOIRLab/Gemini Observatory Joseph Minafra NASA SSERVI Brian Mitchell NASA Marshall Space Flight Center Mark Newhouse NSF’s NOIRLab/Gemini Observatory Junichi Noumaru Subaru Telescope Harriet Parsons EAO/JCMT Emily Peavy ‘Imiloa Astronomy Center Shelly Pelfrey W.M. Keck Observatory Joy Pollard Gemini Observatory/NSF’s NOIRLab Rodrigo Romo PISCES Laurie Rousseau-Nepton Canada-France-Hawaii Telescope Julien Rousselle Subaru Telescope Therese Sampia NSF’s NOIRLab/Gemini Observatory Tom Schad National Solar Observatory/DKIST Juan Seguel NSF’s NOIRLab/Gemini Observatory Doug Simons Canada-France-Hawaii Telescope Mirko Simunovic Subaru Telescope Patrice Smith EAO/JCMT Teague Soderman NASA SSERVI Robert Sparks NSF’s NOIRLab/Gemini Observatory Gordon Squires Thirty Meter Telescope Marianne Takamiya UH-Hilo Physics & Astronomy Ichi Tanaka Subaru Telescope Alex Tetarenko EAO/JCMT Andrea Waiters UH-Hilo Physics & Astronomy Josh Walawender W.M. Keck Observatory Connie Walker NSF’s NOIRLab/Gemini Observatory Michitoshi Yoshida Subaru Telescope For more information contact Janice Harvey at: [email protected] h ps://noirlab.edu/public/education/journey-through-the-universe/ OPHYSIC TR AL S A O N B A S I E N R V O A S T H O T I R Y M S A C A A SMA IA DE A MIA SINIC.
Recommended publications
  • 1 Director's Message
    1 Director’s Message Laura Ferrarese 3 Rocky Planet Engulfment Explains Stellar Odd Couple Carlos Saffe 7 Astronomers Feast on First Light From Gravitational Wave Event Peter Michaud 11 Science Highlights Peter Michaud 15 On the Horizon Gemini staff contributions 18 News for Users Gemini staff contributions ON THE COVER: GeminiFocus October 2017 Gemini South provided critical GeminiFocus is a quarterly publication observations of the first of the Gemini Observatory electromagnetic radiation from 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720, USA a gravitational wave event. / Phone: (808) 974-2500 / Fax: (808) 974-2589 (See details starting on page 7.) Online viewing address: www.gemini.edu/geminifocus Managing Editor: Peter Michaud Associate Editor: Stephen James O’Meara Designer: Eve Furchgott/Blue Heron Multimedia Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Gemini Partnership. ii GeminiFocus October 2017 Laura Ferrarese Director’s Message The Three Goals of a Year-long Vision Hello, Aloha, and Hola! I am delighted to address the Gemini community from my new role as the Observatory’s Interim Director. I will hold this position for the next year, while the search for a perma- nent Director moves forward. As I write this (beginning of September), I have been in Hilo, Hawai‘i, for almost two months, and it’s been an exciting time. I have enjoyed work- ing with the Gemini staff, whose drive, dedication, and talent were already well known to me from when I chaired the Observatory Oversight Council on behalf of the Association of Universities for Research in Astronomy (AURA).
    [Show full text]
  • A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System
    Space Sci Rev (2020) 216:100 https://doi.org/10.1007/s11214-020-00719-1 A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System Martin Turbet1 · Emeline Bolmont1 · Vincent Bourrier1 · Brice-Olivier Demory2 · Jérémy Leconte3 · James Owen4 · Eric T. Wolf5 Received: 14 January 2020 / Accepted: 4 July 2020 / Published online: 23 July 2020 © The Author(s) 2020 Abstract TRAPPIST-1 is a fantastic nearby (∼39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of po- tentially habitable planets known to exist. Since the announcement of the discovery of the TRAPPIST-1 planetary system in 2016, a growing number of techniques and approaches have been used and proposed to characterize its true nature. Here we have compiled a state- of-the-art overview of all the observational and theoretical constraints that have been ob- tained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, planet formation and migration, orbital stability, effects of tides and Transit Timing Variations, transit observations, stellar contamination, density measurements, and numerical climate and escape models. Each of these topics adds a brick to our understand- ing of the likely—or on the contrary unlikely—atmospheres of the seven known planets of the system.
    [Show full text]
  • Gemini North Telescope
    Gemini North Telescope Image Credit: Gemini Observatory/AURA/Joy Pollard Gemini Observatory Legacy Image Gemini North Telescope Gemini Observatory Facts The Gemini Observatory is operated by the Association of Universities for The 8-meter Frederick C. Gillett Gemini North telescope is PRIMARY MIRRORS: Research in Astronomy, Inc., under a cooperative agreement with the located near the summit of Hawaii’s Maunakea — a long Diameter: 8.1 meters; 26.57 feet; 318.84 inches National Science Foundation on behalf Mass: 22.22 metric tonnes; 24.5 U.S. tons of the Gemini Partnership. dormant volcano rising 4,205 meters into the dry, stable air Composition: Corning Ultra-Low Expansion (ULE) Glass of the North Pacific. Gemini North was designed and built, Surface Accuracy: 15.6 nm RMS (between 1/1000 - 1/10,000 in part, to provide the best image quality possible from the thickness of human hair) ground for telescopes of its size. TELESCOPE STRUCTURES: United States Four significant features help the telescope achieve this Height: 21.7 meters; 71.2 feet; 7 stories (from “Observing Floor”) goal: (1) An ~20-centimeter-thin primary mirror on a bed of Weight: 380 metric tonnes; 419 U.S. tons Optomechanical Design: Cassegrain ; Alt-azimuth 120 hydraulic actuators; (2) a 1-meter-diameter secondary DOMES: Canada mirror capable of rapid tip-tilt corrective motions; (3) vents on the cylindrical walls to provide a smooth flow of air Height: 46 meters; 151 feet; 15 stories (from ground) above the primary mirror, and to regulate the temperature Weight: 780 metric tonnes; 860 U.S. tons (moving mass) Rotation: 360 degrees in 2 minutes of the air above the mirror to match the outside Thermal Vents: 10 meters; 32.8 feet (width – fully open) temperature; and (4) an adaptive optics system which Brazil GEOGRAPHICAL DATA: can correct for image blurring caused by atmospheric Elevation: Gemini North: 4,214 meters; 13,824 feet turbulence.
    [Show full text]
  • Temperature Control for the Primary Mirror of Subaru Telescope Using the Data from 'Forecast for Mauna Kea Observatories'
    Publ. Natl. Astron. Obs. Japan Vol. 7. 25–31 (2003) Temperature Control for the Primary Mirror of Subaru Telescope using the Data from ‘Forecast for Mauna Kea Observatories’ ∗ Akihiko MIYASHITA, Ryusuke OGASAWARA ,GeorgeMACARAYA†, and Noboru ITOH† (Received March 28, 2003) Abstract Based on the successful numerical weather forecasting performed by collaboration between the Mauna Kea Weather Center and Subaru Telescope, we developed a temperature control system for the primary mirror of the Subaru Telescope. Temperature forecast is accurate 80% in 2 degrees. After the start of operation, the temperature of the primary mirror controlled below 1 degree centigrade compared by the ambient night air temperature in over 70% probability. The effect of the temperature control for the improvement of the seeing of Subaru telescope seems to be moderately effective. The median of the seeing size of Subaru Telescope on May 2000 to March 2003 is 0.655 arcsec FWHM. We need further investigation as to whether the improvement is the result of our successful temperature control system of the primary mirror or the effect of the annual variation of seeing itself. Thus, we need a longer period of data for verification of the effectiveness of the temperature control. Key words: Subaru Telescope, Weather forecast, Seeing, Primary mirror, Temperature control. the actual night-time temperature over the entire night. 1. Introduction The predicted temperature by Mauna Kea Weather Center In order to obtain high quality images from optical- is used as a target temperature of the air-conditioning systems. infrared telescope, the heat generated by the instruments and After a preliminary test run of our method, it was found to equipment need to be removed.
    [Show full text]
  • Noirlab Visual Identity V.1.0 — Noirlab Brand Manual “A Logo Is a Flag, a Signature, an Escutcheon, a Street Sign
    NOIRLab Visual Identity v.1.0 — NOIRLab Brand Manual “A logo is a flag, a signature, an escutcheon, a street sign. A logo identifies. A logo is rarely a description of a business. A logo derives meaning from the quality of the thing it symbolizes, not the other way around. A logo is less important than the product it signifies; what it represents is more important than what it looks like. The subject matter of a logo can be almost anything.” Paul Rand VI 1.0 ii Table of Contents NOIRLab Visual Identity v.1.0 i » — NOIRLab Brand Manual i Introduction — about this manual 1 ● About NOIRLab 1 ● NOIRLab Design brief 3 » Logo 3 ● General branding principles 4 The NOIRLab Logo 5 ● NOIRLab logo variations 7 » Versions for colored backgrounds 7 » Appropriate and Inappropriate Uses 8 » Widescreen version (for special applications) 9 » Clear Space 9 » NSF and NOIRLab 9 NOIRLab Typeface 10 ● Quatro — Headlines, Subheads, & Callouts 10 ● Source Sans Pro — for sans serif body text 10 ● Freight — for serif body text 10 ● Fallback typeface: Arial — (sans serif) 10 ● Times New Roman — (serif) 10 Color Usage 11 ● Accent Colors 11 Additional Brand Elements 12 ● Watermark elements 13 ● Program Iconography 13 Applications of the Visual Identity 14 ● Letterhead 14 ● Presentation slides 15 ● Poster Templates 15 ● Social Media Posts and Events 16 ● Employee Access Badges 16 ● Conference Nametags 16 ● Office Door Signs 17 ● Controlled document template 17 ● Credit block for CAD drawings 17 Acknowledgments and Affiliations 18 ● Acknowledgments in scientific papers 18 ● Affiliations on conference badges, email signatures etc. 18 iii 2021.06.24 ● Suggested Email signatures 18 ● NOIRLab Scientific and Technical Staff Affiliations 19 ● Image and video Credits 19 ● Branding issues in press releases and other texts 19 ● Business Cards 20 Program logos 21 ● NOIRLab Program Logos 21 ● Cerro Tololo 22 ● Kitt Peak 22 ● Community Science and Data Center 23 ● The Gemini Observatory 23 ● The Vera C.
    [Show full text]
  • Subaru Telescope: Current Instruments and Plans for Near-Future
    Subaru Telescope: Current Instruments and Plans for Near-Future Ikuru Iwata (Subaru Telescope, NAOJ) New Development Group Scientist Photo by Enrico Sacchetti Current Subaru Instruments Primary Suprime-Cam FMOS NsOpt HDS NsIR AO188 IRCS CsOpt HiCIAO FOCAS SCExAO Kyoto 3DII CsIR MOIRCS COMICS Optical Instruments • FOCAS: Imaging, Multi-Object Spectroscopy, Polarization • FOV: 6’Φ, 0.10”/pix, R=250 - 7,500 (0.4” slit) • HDS: High-Dispersion Spectrograph • R=100,000 (0.38” slit), 0.14”/pix • Image Slicer: 0.3” x 5 opened in S11B • Suprime-Cam: Wide-Field Imaging • FOV: 34’ x 27’, 0.20”/pix • Kyoto 3D II: Three-Dimensional Spectroscopy • Fabry-Perot: FOV: 1.9‘x1.9’, 0.056”/pix, IFS: FOV: 3.4”x3.4”, 0.094”/pix Infrared Instruments • COMICS: Mid-IR Imaging and Spectroscopy • λ=8 - 25μm, FOV: 42”x32”, 0.13”/pix • FMOS: Near-IR Fiber Multi-Object Spectroscopy • 400 fibers, λ=0.9 - 1.8μm, FOV: 30’Φ, R= 500 & 2,200 • IRCS: Near-IR Imaging and Spectroscopy with AO • λ=0.9-5.5μm, FOV: 21” (20mas/pix), 54” (52mas/pix), R: 100-2,000 (grism), ~20,000 (echelle) • MOIRCS: Near-IR Wide-field Imaging and MOS • λ=0.9-2.5μm, FOV: 4’x7’, 0.12”/pix • AO188 / LGS: Adaptive Optics System with Laser Guide Star • HiCIAO: High-Contrast Coronagraph • λ=0.85-2.5μm, FOV: 20”x10” (DI, PDI), 5”x5” (SDI), 1e-5.5 contrast at r=1” Slide by H. Takami Two Outstanding Features among 8-10m Telescopes 1. Prime Focus 2. Good Image Quality Prime Focus Capability of Wide-Field Imaging and Spectroscopy Suprime-Cam FMOS • Fiber Multi-Object Spectrograph • 400 Fibers over 30’ Φ Field-of-View • 0.9 - 1.8 μm • OH Suppression with Mask Mirror FMOS Slide by N.
    [Show full text]
  • NOAO NEWSLETTER from the Office of the Director
    Director’s Corner NOAO NEWSLETTER From the Office of the Director .......................................................................................................................................2 ISSUE 118 | OCTOBER 2018 Science Highlights Looking Ahead to Looking Back in Time with DESI ....................................................................................................3 The Dark Energy Survey: The Journey So Far and the Path Forward ......................................................................5 Managing Editor A Reconnaissance of RECONS .......................................................................................................................................8 Sharon Hunt Discovering 12 New Moons Around Jupiter .................................................................................................................9 NOAO Director’s Office Community Science & Data David Silva “More Is Different” in Data-Driven Astronomy ..........................................................................................................11 Data Lab 2.0 Is Bigger and Better ...............................................................................................................................12 Science Highlights The US Extremely Large Telescope Program .............................................................................................................13 Tod R. Lauer “Science and Evolution of Gemini Observatory” Conference ...............................................................................14
    [Show full text]
  • The Galactic Center
    Proceedings of the International Astronomical Union IAU Symposium No. 303 IAU Symposium IAU Symposium 30 September – 4 October 2013 IAU Symposium 303 highlights the latest Galactic Center research by scientists from around the world. Topics vary from theory 303 Santa Fe, NM, USA through observations, from stars and stellar orbits through nearby black holes and explosive events, to the building blocks and transport of energy in galaxies similar to our own Milky Way. Highlights presented include: high-resolution, multi-wavelength 30 September – 303 30 September – 4 October 2013 The Galactic Center: large-scale surveys of molecular gas in the central molecular and 4 October 2013 The Galactic Center: dust zones of our Galaxy; studies of stellar populations and stellar Santa Fe, NM, USA orbits around the supermassive black hole Sgr A*; presentations of Santa Fe, NM, USA Feeding and Feedback theoretical models to explain the dusty S-cluster object (DSO) G2, Feeding and Feedback in as well as the general accretion and jet formation in the vicinity of Sgr A*; and discussions of large-scale γ -ray emission in the context in a Normal Galactic of energetic activity and magnetic fi elds in the Galactic Center. The volume concludes by looking ahead to future observing a Normal Galactic Nucleus Nucleus opportunities across the electromagnetic spectrum at very high resolution. Proceedings of the International Astronomical Union Editor in Chief: Prof. Thierry Montmerle This series contains the proceedings of major scientifi c meetings held by the International Astronomical Union. Each volume contains a series of articles on a topic of current interest in astronomy, giving a timely overview of research in the fi eld.
    [Show full text]
  • Comet ISON Hurtles Toward an Uncertain Destiny with the Sun
    3 Director’s Message Markus Kissler-Patig 6 Featured Science: Dynamical Masses of Galaxy Clusters Discovered with the Sunyaev-Zel’dovich Effect Cristóbal Sifón, Felipe Menanteau, John P. Hughes, and L. Felipe Barrientos, for the ACT collaboration 11 Science Highlights Nancy A. Levenson 14 Cover Story: GeMS Embarks on the Universe Benoit Neichel and Rodrigo Carrasco 19 Instrumentation Development Updates Percy Gomez, Stephen Goodsell, Fredrik Rantakyro, and Eric Tollestrup 23 Operations Corner Andy Adamson 26 Featured Press Release: Comet ISON Hurtles Toward an Uncertain Destiny with the Sun On the Cover: GeminiFocus July 2013 The montage on GeminiFocus is a quarterly publication of Gemini Observatory this issue’s cover highlights several of 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720 USA the spectacular images Phone: (808) 974-2500 Fax: (808) 974-2589 gathered as part of Online viewing address: the System Verification www.gemini.edu/geminifocus of the Gemini Multi- Managing Editor: Peter Michaud conjugate adaptive Science Editor: Nancy A. Levenson optics System (GeMS). Associate Editor: Stephen James O’Meara See the article starting on page 14 Designer: Eve Furchgott / Blue Heron Multimedia to learn more about this system and the cutting-edge science it Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. is performing — right out of the starting gate! 2 GeminiFocus July2013 Markus Kissler-Patig Director’s Message 2013: A Year of Milestones, Change, and Accomplishments We’ve seen quite a few changes at Gemini since the start of 2013.
    [Show full text]
  • Auxiliary Telescopes Control Software
    TrendsTrends inin SoftwareSoftware forfor largelarge astronomyastronomy projectsprojects G.Chiozzi, A.Wallander – ESO, Germany K.Gillies – Gemini Observatory, La Serena, Chile B.Goodrich, S.Wampler - National Solar Observatory, Tucson, AZ J.Johnson, K.McCann – W.M.Keck Observatory, Kamuela, HI G.Schumacher – National Optical Astronomy Observatories, La Serena, Chile D.Silva – AURA/Thirty Meter Telescope, Pasadena, CA 1 AspectsAspects analyzedanalyzed z TimelineTimeline z ChallengesChallenges z ArchitectureArchitecture z FrameworksFrameworks z DevelopmentDevelopment methodologiesmethodologies z TechnologicalTechnological implementationimplementation z HWHW platformsplatforms z OperatingOperating systemssystems z ProgrammingProgramming languageslanguages z User Interfaces. User Interfaces. 2 Keck TimelineTimeline VLT/VLTI 1990 Gemini N/S 1995 2000 LSST 2005 ALMA 2010 ATST 2015 TMT 2020 E-ELT 3 ChallengesChallenges ofof newnew projectsprojects z SynchronizedSynchronized multiplemultiple distributeddistributed controlcontrol loopsloops (wave(wave frontfront control)control) z MultiMulti--levellevel offoff--loadingloading schemesschemes z FaultFault detection,detection, isolationisolation andand recoveryrecovery (E(E--ELTELT M1:M1: 10001000 segmentssegments withwith actuatorsactuators andand sensors)sensors) z OperationalOperational efficiencyefficiency (TMT(TMT requirement:requirement: onon targettarget inin <5<5 minutes).minutes). 4 ArchitectureArchitecture z All major facilities in operation: three-tier architecture z High-level coordination
    [Show full text]
  • My Chilean Telescopes and Southern Sky Experience
    Observatories at the Extreme My Chilean Telescopes and Southern Sky Experience Sian Proctor South Mountain Community College Photo by John Blackwell Astronomy in Chile Educator Ambassadors Program The Astronomy in Chile Educator Ambassadors Program (ACEAP) is a program that brings amateur astronomers, planetarium personnel, and K-16 formal and informal astronomy educators to US astronomy facilities in Chile. The ambassadors visit Cerro Tololo Inter-American Observatory (CTIO), Gemini-South Observatory, and the Atacama Large Millimeter-submillimeter Array (ALMA) along with smaller tourist observatories. The ambassadors also participate in local school outreach. The program is funded by the National Science Foundation. In 2016, nine ambassadors were chosen from across the United States to travel to Chile and learn about the observatories, researchers, and science being conducted. The image to the right is of me with my fellow ambassadors. Gemini Observatory ALMA The Gemini Observatory The Atacama Large Millimeter-submillimeter Array (ALMA) consists of twin 8.1 meter consists of sixty-six 12m (39 ft) and 7m (23 ft) radio telescopes optical/infrared telescopes located in the Atacama desert at an altitude of 5,059m (16,597 ft) located in Hawai'i on top of Mauna Kea and in Chile on Cerro Pachón. The Gemini telescopes can collectively cover both hemispheres providing a complete view of the night sky. The antennas probe deep into our universe in search of the very first stars and galaxies to help us understand our cosmic origins. Gemini is operated through an international agreement between the USA, Canada, Brazil, Argentina, and Chile. Astronomers from these partnering countries can apply for time on Gemini.
    [Show full text]
  • The Mauna Kea Observatories Near-Infrared Filter Set. II. Specifications for a New JHKL!
    Publications of the Astronomical Society of the Pacific, 114:180–186, 2002 February ᭧ 2002. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. The Mauna Kea Observatories Near-Infrared Filter Set. II. Specifications for a New JHKLЈMЈ Filter Set for Infrared Astronomy A. T. Tokunaga Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822; [email protected] D. A. Simons Gemini Observatory, Northern Operations Center, 670 North A‘ohoku Place, Hilo, HI 96720; [email protected] and W. D. Vacca Max-Planck-Institut fu¨r extraterrestrische Physik, Postfach 1312, D-85741 Garching, Germany; [email protected] Received 2001 July 28; accepted 2001 October 17 ABSTRACT. We present a description of a new 1–5 mm filter set similar to the long-used JHKLM filter set derived from that of Johnson. The new Mauna Kea Observatories Near-Infrared filter set is designed to reduce background noise, improve photometric transformations from observatory to observatory, provide greater accuracy in extrapolating to zero air mass, and reduce the color dependence in the extinction coefficient in photometric reductions. We have also taken into account the requirements of adaptive optics in setting the flatness specification of the filters. A complete technical description is presented to facilitate the production of similar filters in the future. 1. INTRODUCTION baru Telescopes, all of the optical/infrared observatories at Mauna Kea are currently using these filters (NASA Infrared The rationale for a new set of infrared filters was presented Telescope Facility, United Kingdom Infrared Telescope, Canada- by Simons & Tokunaga (2002, hereafter Paper I).
    [Show full text]