GPS-DERIVED HEIGHTS PROFESSIONAL LAND SURVEYORS OF OREGON SALEM JANUARY 23, 2014 Dave Doyle Base 9 Geodetic Consulting Services National Geodetic Survey (Retired)
[email protected] ELLIPSOID - GEOID RELATIONSHIP H = Orthometric Height (NAVD 88) h = Ellipsoid Height (NAD 83 (2011)) N = Geoid Height (GEOID12A) H = h – N H h N Geoid Geoid Model “Mean Sea Level” Ellipsoid GRS80 MONUMENTS IN THE GROUND ANTENNAS IN THE AIR HOW ARE ACCURATE HEIGHTS MEASURED? LEVELING (mm accuracy) (very expensive, time consuming, highly trained personnel) And/Or GNSS (several cm accuracy) (cheaper, quicker, fewer trained personnel) GEODETIC DATUMS HORIZONTAL 2 D (Latitude and Longitude) (e.g. U.S. Standard Datum, NAD 27, NAD 83 (1986)) Fixed and Stable - Coordinates seldom change GEOMETRIC 3-D (Latitude, Longitude and Ellipsoid Height) Fixed and Stable - Coordinates seldom change (e.g. NAD 83 (“HARN”), NAD 83 (CORS96), NAD 83 (2007), NAD 83 (2011)) 4-D (Latitude, Longitude, Ellipsoid Height, Velocities) Coordinates change with time (e.g. ITRF00, IGS08) VERTICAL 1 D (Orthometric Height) (Leveling constrained to 1 or more long-term tide stations) (e.g. NGVD 29, NAVD 88, PRVD 02, VIVD 09 etc.) GEOPOTENTIAL 1 D (Orthometric Height) (Realized by GNSS + High Accuracy Gravimetric Geoid Model) (e.g. GRAV-D) NATIONAL SPATIAL REFERENCE SYSTEM(NSRS) Consistent National Coordinate System • Latitude • Longitude • Height • Scale • Gravity • Orientation and how these values change with time NSRS COMPONENTS • National Shoreline - Consistent, accurate, and up-to-date • Networks of geodetic control points - Permanently marked passive survey monuments • National and Cooperative CORS - A network of GPS Continuously Operating Reference Stations • Tools -Models of geophysical effects on spatial measurements -e.g., NADCON, INVERSE, SPCS83, UTMS, FORWARD SUBSIDENCE: 10 MM/YEAR TO OVER 27 MM/YR WHEN WAS THE PASSIVE MARK ACCESSED? METADATA DATA ABOUT DATA DATUMS NAD 27, NAD 83(1986), NAD83 (1992), NAD 83 (2007), NAD 83 (2011), NGVD29, NAVD88 UNITS Meters, U.S.