New Datums Are Coming in 2022 Connecticut GIS Network Spring Meeting March 23, 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022
Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022 PDH330 3 Hours PDH Academy PO Box 449 Pewaukee, WI 53072 (888) 564-9098 www.pdhacademy.com [email protected] Geodetic Surveying Final Exam 1. Who established the U.S. Coast and Geodetic Survey? A) Thomas Jefferson B) Benjamin Franklin C) George Washington D) Abraham Lincoln 2. Flattening is calculated from what? A) Equipotential surface B) Geoid C) Earth’s circumference D) The semi major and Semi minor axis 3. A Reference Frame is based off how many dimensions? A) two B) one C) four D) three 4. Who published “A Treatise on Fluxions”? A) Einstein B) MacLaurin C) Newton D) DaVinci 5. The interior angles of an equilateral planar triangle adds up to how many degrees? A) 360 B) 270 C) 180 D) 90 6. What group started xDeflec? A) NGS B) CGS C) DoD D) ITRF 7. When will NSRS adopt the new time-based system? A) 2022 B) 2020 C) Unknown due to delays D) 2021 8. Did the State Plane Coordinate System of 1927 have more zones than the State Plane Coordinate System of 1983? A) No B) Yes C) They had the same D) The State Plane Coordinate System of 1927 did not have zones 9. A new element to the State Plane Coordinate System of 2022 is: A) The addition of Low Distortion Projections B) Adjoining tectonic plates C) Airborne gravity collection D) None of the above 10. The model GRAV-D (Gravity for Redefinition of the American Vertical Datum) created will replace _____________ and constitute the new vertical height system of the United States A) Decimal degrees B) Minutes C) NAVD 88 D) All of the above Introduction to Geodetic Surveying The early curiosity of man has driven itself to learn more about the vastness of our planet and the universe. -
Meyers Height 1
University of Connecticut DigitalCommons@UConn Peer-reviewed Articles 12-1-2004 What Does Height Really Mean? Part I: Introduction Thomas H. Meyer University of Connecticut, [email protected] Daniel R. Roman National Geodetic Survey David B. Zilkoski National Geodetic Survey Follow this and additional works at: http://digitalcommons.uconn.edu/thmeyer_articles Recommended Citation Meyer, Thomas H.; Roman, Daniel R.; and Zilkoski, David B., "What Does Height Really Mean? Part I: Introduction" (2004). Peer- reviewed Articles. Paper 2. http://digitalcommons.uconn.edu/thmeyer_articles/2 This Article is brought to you for free and open access by DigitalCommons@UConn. It has been accepted for inclusion in Peer-reviewed Articles by an authorized administrator of DigitalCommons@UConn. For more information, please contact [email protected]. Land Information Science What does height really mean? Part I: Introduction Thomas H. Meyer, Daniel R. Roman, David B. Zilkoski ABSTRACT: This is the first paper in a four-part series considering the fundamental question, “what does the word height really mean?” National Geodetic Survey (NGS) is embarking on a height mod- ernization program in which, in the future, it will not be necessary for NGS to create new or maintain old orthometric height benchmarks. In their stead, NGS will publish measured ellipsoid heights and computed Helmert orthometric heights for survey markers. Consequently, practicing surveyors will soon be confronted with coping with these changes and the differences between these types of height. Indeed, although “height’” is a commonly used word, an exact definition of it can be difficult to find. These articles will explore the various meanings of height as used in surveying and geodesy and pres- ent a precise definition that is based on the physics of gravitational potential, along with current best practices for using survey-grade GPS equipment for height measurement. -
Noaa 2022 Nsrs Adjustment Part 3
NOAA Technical Report NOS NGS 67 Blueprint for 2022, Part 3: Working in the Modernized NSRS Initial draft released April 25, 2019 1 Versions Date Changes April 25, 2019 Original Draft Release 2 Notes On the use of “TBD”: This document is an initial draft of policies and procedures the National Geodetic Survey (NGS) is refining as we prepare to define the modernized National Spatial Reference System (NSRS) in year 2022. The intent of releasing this document so many years in advance is so we may provide the NSRS user community with insight and as many details as are currently available, as well as to give time for these details to be read and understood and for feedback to be provided back to NGS. The early release of this document, therefore, naturally comes with certain unresolved decisions. Rather than delay the entire document, the term TBD (To Be Determined) has been used herein to indicate where a decision is pending. On the use of the terms “datums” and “reference frames”: Entire chapters of books could be dedicated to the distinction, or lack thereof, between the terms datums and reference frames, however for this paper we will define these terms in this way: In 2022 the NSRS will consist of four terrestrial reference frames and one geopotential datum. From time to time and for the sake of brevity, the four terrestrial reference frames and the one geopotential datum may be clustered under the general term “new datums.” For example, NGS has put information concerning the NSRS modernization on a “New Datums” web page. -
National Spatial Reference System: "Positioning Changes for 2022"
National Spatial Reference System “Positioning Changes for 2022” Civil GPS Service Interface Committee Meeting Miami, Florida September 24, 2018 Denis Riordan, PSM NOAA, National Geodetic Survey [email protected] U.S. Department of Commerce National Oceanic & Atmospheric Administration National Geodetic Survey Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs National Spatial Reference System * Latitude * Scale * Longitude * Gravity * Height * Orientation & their variations in time U. S. Geometric Datums in 2022 National Spatial Reference System (NSRS) Improvements in the Horizontal Datums TIME NETWORK METHOD NETWORK SPAN ACCURACY OF REFERENCE NAD 27 1927-1986 10 meter (1 part in 100,000) TRAVERSE & TRIANGULATION - GROUND MARKS USED FOR NAD83(86) 1986-1990 1 meter REFERENCING (1 part THE in 100,000) NSRS. NAD83(199x)* 1990-2007 0.1 meter GPS B- orderBECOMES (1 part THE in MEANS 1 million) OF POSITIONING – STILL GRND MARKS. HARN A-order (1 part in 10 million) NAD83(2007) 2007 - 2011 0.01 meter 0.01 meter GPS – CORS STATIONS ARE MEANS (CORS) OF REFERENCE FOR THE NSRS. NAD83(2011) 2011 - 2022 0.01 meter 0.01 meter (CORS) NSRS Reference Basis Old Method - Ground Current Method - GNSS Stations Marks (Terrestrial) (CORS) Why Replace NAD83? • Datum based on best known information about the earth’s size and shape from the early 1980’s (45 years old), and the terrestrial survey data of the time. • NAD83 is NON-geocentric & hence inconsistent w/GNSS . • Necessary for agreement with future ubiquitous positioning of GNSS capability. Future Geometric (3-D) Reference Frame Blueprint for 2022: Part 1 – Geometric Datum • Replace NAD83 with new geometric reference frame – by 2022. -
Datums in Texas NGS: Welcome to Geodesy
Datums in Texas NGS: Welcome to Geodesy Geodesy is the science of measuring and monitoring the size and shape of the Earth and the location of points on its surface. NOAA's National Geodetic Survey (NGS) is responsible for the development and maintenance of a national geodetic data system that is used for navigation, communication systems, and mapping and charting. ln this subject, you will find three sections devoted to learning about geodesy: an online tutorial, an educational roadmap to resources, and formal lesson plans. The Geodesy Tutorial is an overview of the history, essential elements, and modern methods of geodesy. The tutorial is content rich and easy to understand. lt is made up of 10 chapters or pages (plus a reference page) that can be read in sequence by clicking on the arrows at the top or bottom of each chapter page. The tutorial includes many illustrations and interactive graphics to visually enhance the text. The Roadmap to Resources complements the information in the tutorial. The roadmap directs you to specific geodetic data offered by NOS and NOAA. The Lesson Plans integrate information presented in the tutorial with data offerings from the roadmap. These lesson plans have been developed for students in grades 9-12 and focus on the importance of geodesy and its practical application, including what a datum is, how a datum of reference points may be used to describe a location, and how geodesy is used to measure movement in the Earth's crust from seismic activity. Members of a 1922 geodetic suruey expedition. Until recent advances in satellite technology, namely the creation of the Global Positioning Sysfem (GPS), geodetic surveying was an arduous fask besf suited to individuals with strong constitutions, and a sense of adventure. -
What Are Geodetic Survey Markers?
Part I Introduction to Geodetic Survey Markers, and the NGS / USPS Recovery Program Stf/C Greg Shay, JN-ACN United States Power Squadrons / America’s Boating Club Sponsor: USPS Cooperative Charting Committee Revision 5 - 2020 Part I - Topics Outline 1. USPS Geodetic Marker Program 2. What are Geodetic Markers 3. Marker Recovery & Reporting Steps 4. Coast Survey, NGS, and NOAA 5. Geodetic Datums & Control Types 6. How did Markers get Placed 7. Surveying Methods Used 8. The National Spatial Reference System 9. CORS Modernization Program Do you enjoy - Finding lost treasure? - the excitement of the hunt? - performing a valuable public service? - participating in friendly competition? - or just doing a really fun off-water activity? If yes , then participation in the USPS Geodetic Marker Recovery Program may be just the thing for you! The USPS Triangle and Civic Service Activities USPS Cooperative Charting / Geodetic Programs The Cooperative Charting Program (Nautical) and the Geodetic Marker Recovery Program (Land Based) are administered by the USPS Cooperative Charting Committee. USPS Cooperative Charting / Geodetic Program An agreement first executed between USPS and NOAA in 1963 The USPS Geodetic Program is a separate program from Nautical and was/is not part of the former Cooperative Charting agreement with NOAA. What are Geodetic Survey Markers? Geodetic markers are highly accurate surveying reference points established on the surface of the earth by local, state, and national agencies – mainly by the National Geodetic Survey (NGS). NGS maintains a database of all markers meeting certain criteria. Common Synonyms Mark for “Survey Marker” Marker Marker Station Note: the words “Geodetic”, Benchmark* “Survey” or Station “Geodetic Survey” Station Mark may precede each synonym. -
Modernization of the National Spatial Reference System
Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System William A. Stone & Dana J. Caccamise II NOAA’s National Geodetic Survey NOAA’s National Geodetic Survey Mission & Vision To define, maintain, and provide access to the National Spatial Reference System to Introduction meet our nation's economic, social, and environmental needs Presented here is an update, including recent naming convention and technical decisions, for … is the mission of the United States National Oceanic and Atmospheric Administration’s the ongoing National Geodetic Survey effort to modernize the National Spatial Reference (NOAA) National Geodetic Survey (NGS). The National Spatial Reference System (NSRS) is System, which will culminate in the 2022 (anticipated) replacement of all components of the the nation’s system of latitude, longitude, height/elevation, and related geophysical and current U.S. national geodetic datums and models, including the North American Datum of geodetic models, tools, and data, which together provide a consistent spatial framework for the 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88). This modernized broad spectrum of civilian geospatial data positioning requirements. NSRS facilitates and three-dimensional and time-dependent national spatial framework will optimally leverage the empowers the NGS organizational vision that … ever-increasing capabilities of modern technologies, data, and modeling – notably the Global Navigation Satellite System (GNSS), gravity data, and geopotential/tectonic modeling – while Everyone accurately knows where they are and where other things are better accommodating Earth’s dynamic nature. The future NSRS will feature unprecedented anytime, anyplace. accuracy and repeatability, and users will experience many efficiencies of access well beyond To continue to accomplish the mission and further the vision of today’s NGS, today’s capability. -
Vertical Datum Conversion Guidance
Guidance for Flood Risk Analysis and Mapping Vertical Datum Conversion May 2014 This guidance document supports effective and efficient implementation of flood risk analysis and mapping standards codified in the Federal Insurance and Mitigation Administration Policy FP 204- 07801. For more information, please visit the Federal Emergency Management Agency (FEMA) Guidelines and Standards for Flood Risk Analysis and Mapping webpage (http://www.fema.gov/guidelines-and- standards-flood-risk-analysis-and-mapping), which explains the policy, related guidance, technical references, and other information about the guidelines and standards process. Nothing in this guidance document is mandatory other than standards codified separately in the aforementioned Policy. Alternate approaches that comply with FEMA standards that effectively and efficiently support program objectives are also acceptable. Vertical Datum Conversion May 2014 Guidance Document 24 Page i Document History Affected Section or Date Description Subsection Initial version of new transformed guidance. The content was derived from the Guidelines and Specifications for Flood First Publication May 2014 Hazard Mapping Partners, Procedure Memoranda, and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Vertical Datum Conversion May 2014 Guidance Document 24 Page ii Table of Contents 1.0 Overview .................................................................................................................................. -
Mind the Gap! a New Positioning Reference
A new positioning reference Why is the United States adopting NATRF2022? What are we doing about this in Canada? We want to hear from you! • The Canadian Geodetic Survey and the United States • Improved compatibility with Global Navigation • The Canadian Geodetic Survey is working closely National Geodetic Survey have collaborated for Satellite Systems (GNSS), such as GPS, is driving this with the United States National Geodetic Survey in • Send us your comments, the challenges you over a century to provide the fundamental reference change. The geometric reference frames currently defining reference frames to ensure they will also foresee, and any concerns to help inform our path Mind the gap! systems for latitude, longitude and height for their used in Canada and the United States, although be suitable for Canada. forward to either of these organizations: respective countries. compatible with each other, are offset by 2.2 m from • Geodetic agencies from across Canada are A new positioning reference the Earth’s geocentre, whereas GNSS are geocentric. - Canadian Geodetic Survey: nrcan. • Together our reference systems have evolved collaborating on reference system improvements geodeticinformation-informationgeodesique. to meet today’s world of GPS and geographical • Real-time decimetre-level accuracies directly from through the Canadian Geodetic Reference System [email protected] NATRF2022 information systems, while supporting legacy datums GNSS satellites are expected to be available soon. Committee, a working committee of the Canadian -
What Does Height Really Mean?
Department of Natural Resources and the Environment Department of Natural Resources and the Environment Monographs University of Connecticut Year 2007 What Does Height Really Mean? Thomas H. Meyer∗ Daniel R. Romany David B. Zilkoskiz ∗University of Connecticut, [email protected] yNational Geodetic Survey zNational Geodetic Suvey This paper is posted at DigitalCommons@UConn. http://digitalcommons.uconn.edu/nrme monos/1 What does height really mean? Thomas Henry Meyer Department of Natural Resources Management and Engineering University of Connecticut Storrs, CT 06269-4087 Tel: (860) 486-2840 Fax: (860) 486-5480 E-mail: [email protected] Daniel R. Roman David B. Zilkoski National Geodetic Survey National Geodetic Survey 1315 East-West Highway 1315 East-West Highway Silver Springs, MD 20910 Silver Springs, MD 20910 E-mail: [email protected] E-mail: [email protected] June, 2007 ii The authors would like to acknowledge the careful and constructive reviews of this series by Dr. Dru Smith, Chief Geodesist of the National Geodetic Survey. Contents 1 Introduction 1 1.1Preamble.......................................... 1 1.2Preliminaries........................................ 2 1.2.1 TheSeries...................................... 3 1.3 Reference Ellipsoids . ................................... 3 1.3.1 Local Reference Ellipsoids . ........................... 3 1.3.2 Equipotential Ellipsoids . ........................... 5 1.3.3 Equipotential Ellipsoids as Vertical Datums ................... 6 1.4MeanSeaLevel....................................... 8 1.5U.S.NationalVerticalDatums.............................. 10 1.5.1 National Geodetic Vertical Datum of 1929 (NGVD 29) . ........... 10 1.5.2 North American Vertical Datum of 1988 (NAVD 88) . ........... 11 1.5.3 International Great Lakes Datum of 1985 (IGLD 85) . ........... 11 1.5.4 TidalDatums.................................... 12 1.6Summary.......................................... 14 2 Physics and Gravity 15 2.1Preamble......................................... -
General Services, Office of Purchasing and Contracting on Behalf of The
STATE OF VERMONT Contract # 40938 Page 1 of 32 STANDARD CONTRACT FOR SERVICES 1. Parties. This is a contract for services between the State of Vermont, Department of Building and General Services, Office of Purchasing and Contracting on behalf of the State of Vermont (hereinafter called “State”), and The Sanborn Map Company Inc., with a principal place of business in Colorado Springs, CO, (hereinafter called “Contractor”). Contractor’s form of business organization is a corporation. It is Contractor’s responsibility to contact the Vermont Department of Taxes to determine if, by law, Contractor is required to have a Vermont Department of Taxes Business Account Number. 2. Subject Matter. The subject matter of this contract is professional services related to the acquisition and delivery of new statewide, color, leaf-off, digital base orthoimagery and related optional “buy-up” products. Detailed services to be provided by Contractor are described in Attachment A. 3. Maximum Amount. In consideration of the services to be performed by the Contractor, the State agrees to pay the Contractor in accordance with the payment provisions specified in Attachment B, a sum not to exceed $950,000.00. 4. Funding Availability. Funding for this 5-year contract is contingent upon annual availability of state funds. There is no guarantee of annual state funding from year-to-year. As a result, one or all years may be skipped. Primary funding will be appropriated on a yearly basis by the VT Legislature through the State’s Capital Fund and/or other funding mechanisms. When adequate funding is not available, the State reserves the right to skip one or all years until-and-if adequate funding becomes available. -
NSRS Modernization New Datums Are Coming in 2022 What’S Being Replaced?
geodesy.noaa.gov NSRS Modernization New Datums are Coming in 2022 What’s Being Replaced? Horizontal Vertical – NAD 83(2011) – NAVD 88 – NAD 83(PA11) – PRVD 02 – NAD 83(MA11) – VIVD09 Heights – ASVD02 Latitude – NMVD03 Longitude – GUVD04 Ellipsoid Height State Plane Coordinates – IGLD 85 2 New Reference Frame Names NAD 83 becomes: • North American Terrestrial Reference Frame (NATRF2022) • Caribbean Terrestrial Reference Frame (CATRF2022) • Mariana Terrestrial Reference Frame (MATRF2022) • Pacific Terrestrial Reference Frame (PATRF2022) NAVD88 becomes: • North American-Pacific Geopotential Datum of 2022 (NAPGD2022) (Realized by GEOID2022) 3 Replace NAD 83 Simplified concept of NAD 83 vs. “2022” Earth’s Surface h”2022” hNAD83 fNAD83 – f”2022” lNAD83 – l”2022” hNAD83 – h”2022” “2022” origin all vary smoothly by latitude and longitude NAD 83 origin 4 Tectonic Plate Velocities Horizontal Vertical IGS08 Velocities Salisbury NCSA N = + 0.0026 m/yr E = - 0.0139 m/yr U = - 0.0000 m/yr 5 New geometric datum minus NAD 83 (horizontal) April 5, 2017 Northern Chapter PLSC New geometric datum minus NAD 83 (ellipsoid height) April 5, 2017 Northern Chapter PLSC New Vertical Datum (Outcome) April 5, 2017 Northern Chapter PLSC SPCS2022 in North Carolina • New State Plane Coordinate System in 2022 – Will replace SPCS 83 – Referenced to new terrestrial reference frames • Two conflicting desires for SPCS2022 coordinates: – Change coordinates as little as possible • Preserve systems based on SPCS 83 coordinates (sft) • E.g., parcel numbering system, FEMA flood