Operating Experience Summary 2008-11

Total Page:16

File Type:pdf, Size:1020Kb

Operating Experience Summary 2008-11 Operating Experience Summary f U.S. Department of Energy Office of Health, Safety and Security OE Summary 2008-11 December 9, 2008 Inside This Issue • Always Check for Overhead Lines When Moving Large Equipment .................................. 1 • Propane-Fueled Forklift Trucks— A Potential Carbon Monoxide Hazard ....................................... 4 • Effective Flowdown of Hazardous Energy Controls to Subcontractor Workers ............7 OPERATING EXPERIENCE SUMMARY Issue Number 2008-11, Article 1: Always Check for Overhead Lines When Moving Large Equipment download this article While the excavator was moving, the boom snagged communication lines that were 17 feet above the roadway, Always Check for Overhead Lines causing a utility pole to break off near ground level and fall to When Moving Large Equipment the ground. The nearest worker was more than 20 feet away from where the pole landed. The falling utility pole caused a second utility pole to snap off (Figure 1-2) and fall toward a 1 small concrete out-building containing diesel generators. The On September 10, 2008, at the Hanford Site, an equipment fallen poles displaced three underground 110-volt and 240-volt operator was moving an excavator out of a construction area electrical lines that were run inside conduit. The 110-volt line when the excavator boom hit an overhead communication line, shorted out and tripped the supply circuit breaker. pulling down two poles and exposing underground electrical lines (Figure 1-1). The equipment operator chose not to The work package identified the overhead hazards and the interrupt other work to get a spotter or flagman and did not requirements for spotters and full retraction of the boom. lower the primary boom for transport. (ORPS Report EM-RL-- Although the equipment operator was aware of these require- PHMC-PFP-2008-0005; final report issued October 8, 2008) ments, he did not follow them. Communication Line Underground Electrical Lines Figure 1-1. The accident scene with excavator and downed utility pole Figure 1-2. Snapped off utility pole Office of Health, Safety and Security Page 1 of 10 December 9, 2008 OPERATING EXPERIENCE SUMMARY Issue Number 2008-11, Article 1: Always Check for Overhead Lines When Moving Large Equipment download this article This incident resulted in two destroyed utility poles; damaged • Another ETTP event occurred on the east side of the K-25 underground electrical lines, conduit, and boxes; downed building on August 8, 2008, when an excavator was being communication lines; and dislocated communication line relocated, but in that event, the excavator hit only the connections to buildings. power pole, not the overhead line. After the event, use of At least two OSHA requirements were violated in this incident. heavy equipment was restricted. (ORPS Report EM-ORO--BJC- OSHA regulation 29 CFR 1910.333(c)(3)(III)(A) states, in part: K25ENVRES-2008-0020) “Any vehicle or mechanical equipment capable of having parts of • On May 5, 2008, at the Hanford Site, while electrical its structure elevated near energized lines shall be operated so linemen were moving a bucket truck that had been used that a clearance of 10 feet is maintained.” (NOTE: If the vehicle during electrical switching, the cradled boom on the truck is in transit with its structure lowered, the clearance may hit a low-hanging abandoned communication line and pulled be reduced to 4 feet.) In addition, OSHA regulation 29 CFR down a pole. (ORPS Report EM-RL--PHMC-ELEC-2008-0001) 1910.550(A)(15)(IV) states: “A person shall be designated to The truck driver drove the truck into the work area and observe clearance of the equipment and give timely warning for underneath the overhead line without any problem; however, all operations where it is difficult for the operator to maintain while exiting the area, the driver took an alternate route the desired clearance by visual means.” underneath the communication line because other vehicles There have been a number of recent events involving heavy parked in the area prevented him from exiting at the same equipment across the Complex. point he entered. He assumed he had adequate clearance • On May 21, 2008, at the East Tennessee Technology Park and focused his attention on the roadway, not on the (ETTP), an equipment operator relocated an excavator overhead line. to the west side of the K-25 building, then exited the cab Contact with energized overhead lines can be extremely and left the area. A coworker noticed that the boom of the dangerous, as demonstrated by the following industry event. excavator was touching a 480-volt double insulated overhead On September 17, 2008, at the Monticello Nuclear Generating line and notified management. (ORPS Report EM-ORO--BJC- Plant, a worker for an equipment rental company was K25ENVRES-2008-0007) electrocuted when the manlift he was driving came in contact The excavator operator was an experienced Journeyman, with an energized 115-kV power line. The worker was at the who had successfully moved equipment around with the plant to assist electrical crews fixing a circuit breaker problem. assistance of a spotter. However, in this event, the operator Investigators from OSHA are reviewing the circumstances of did not walk down the transit path or use a spotter. The the worker’s death. (NRC Event Report 44498) operator indicated that he was unaware of the overhead line. Office of Health, Safety and Security Page 2 of 10 December 9, 2008 OPERATING EXPERIENCE SUMMARY Issue Number 2008-11, Article 1: Always Check for Overhead Lines When Moving Large Equipment download this article If your vehicle or equipment Remain in the Vehicle makes contact with an overhead Until Electrical Power power line, attempt to break Considerations When Moving Has Been De-Energized contact by lowering any raised Equipment Near Overhead Lines sections or by moving the • Have pre-job planning and hazard analyses restricted vehicle vehicle. If you cannot do either, remain in the cab until electrical travel and activities to include only areas where overhead personnel indicate that it is safe to exit. The vehicle could have lines and other hazards have been addressed? become electrically energized, so do not leave the cab without • Have overhead power lines been identified and their heights permission to do so. verified for the travel routes to be taken and the work activities? The textbox lists questions that should be considered when moving heavy equipment in areas where there are overhead lines. • Will any operation of a vehicle place it, its mechanical equipment, or its load within 10 feet of overhead lines, utility These events underscore the importance of exercising extreme poles, or supporting guy wires? caution when working from or moving equipment near overhead • Are all guy wires, utility poles, communication lines, and power lines. DOE facility managers should ensure that facility overhead power lines clearly visible to drivers and spotters? and subcontractor equipment operators are aware of any • Are trained and dedicated spotters provided for all travel overhead electrical hazards. Contact with overhead power lines routes and for all work activities? (If not, why not?) presents a significant personnel safety hazard, as well as the • Is the number of spotters assigned adequate to detect all potential for interruption of electrical power to facility operations hazards, and can they quickly and clearly communicate and safety systems. Work planners and vehicle operators must hazards to the vehicle drivers or equipment operators? know about and maintain minimum safe working clearances • Have steps been taken to ensure continuous communications near power lines. between spotters and vehicle drivers or operators (e.g., use of radios)? KEYWORDS: Overhead, power line, communication line, excavator, crane, bucket truck, manlift, energized, power pole, electrocution, spotter ISM CORE FUNCTIONS: Analyze the Hazards, Develop and Implement Hazard Controls, Perform Work within Controls Office of Health, Safety and Security Page 3 of 10 December 9, 2008 OPERATING EXPERIENCE SUMMARY Issue Number 2008-11, Article 2: Propane-Fueled Forklift Trucks—A Potential Carbon Monoxide Hazard download this article Ocean Gold was fined $10,050 and was cited for six serious Propane-Fueled Forklift Trucks— violations relating to training forklift operators, educating A Potential Carbon Monoxide Hazard drivers on carbon monoxide hazards, not controlling carbon monoxide hazards in an enclosed area, and hazardous noise levels for operators. 2 An event with a potentially similar result recently occurred at The Washington State Department of Labor and Industry is Argonne National Laboratory. On October 21, 2008, firefighters investigating an apparent forklift-related carbon monoxide responding to a pre-alarm from a smoke-detection system poisoning that occurred on September 23, 2008, at Ocean Gold smelled engine exhaust when they entered a building. They Seafoods in Westport, Oregon. Twenty-eight workers at the found personnel using a propane-fueled forklift truck to perform company’s cold storage facility were hospitalized after local a lift operation, and left the building to obtain a portable meter fire, police, and ambulance service personnel responded to to measure air quality. When the firefighters re-entered the an emergency call from Ocean Gold and found more than 20 building, the meter alarmed and showed a reading of 80 parts workers outside the plant vomiting and experiencing headaches. per million (ppm) of carbon monoxide. They ordered workers Of the 28 workers initially treated at a local hospital, 11 to shut off the forklift truck and evacuated seven people from were transferred to a medical center in Seattle for additional the building, all of whom were evaluated by medical personnel. treatment. (http://www.lni.wa.gov/news/2008/pr080924a.asp) None of the workers showed symptoms of carbon monoxide Ocean Gold Seafoods poisoning. (ORPS Report SC--ASO-ANLE-ANLEFMS-2008-0011) had a previous incident Initial reports indicated that the forklift had been operating involving carbon monoxide between an hour and an hour and a half inside the building in 2007, when a worker with one of the three exterior doors closed.
Recommended publications
  • Safety from Electricity Overhead Power Lines
    SAFETY FROM ELECTRICITY OVERHEAD POWER LINES STEVE GARNETT SAFETY MANAGER NORTHERN POWERGRID Call the national telephone number ‘105’ to automatically connect to your Electricity Distribution Network Operator 2 OVERHEAD POWER LINE INCIDENT STATISTICS Contact with overhead power lines is extremely dangerous And it occurs too often Some are very lucky and escape without injuries But when luck has run out, the consequences are frightening… 5 YEAR PERIOD 2012 – 2016 • Over 3000 Haulage and Transport vehicles reported coming into contact with overhead power lines in the UK • 59 people received injuries IN THE LAST 2 YEARS • 8 people were killed • Death is not always instant 3 OVERHEAD POWER LINE EXAMPLES Typical voltages range from 230 Volts up to 400000 Volts Lines can be bare wire, fully insulated or partially insulated 11000 volts 11000 33000 volts volts 230 volts 275000 volts 4 NOT OVERHEAD POWER LINES ? Overhead power lines can sometimes be very difficult to distinguish from telephone lines BT ? 5 EFFECT OF ELECTRIC SHOCK Electric shock is the effect of current flowing through the body It causes muscle contractions, tissue damage and internal burning It can cause cardiac arrest and respiratory failure JUMP Electricity can jump or ‘flashover’ – you don’t need to touch electrical conductors to draw a current Rubber boots will not protect you 6 ENERGY CREATED BY CONTACT WITH ELECTRICITY NETWORKS The energy created by a network contact is equivalent to at least 30,000 single bar electric fires. To put that in context… The Japanese
    [Show full text]
  • Margonin Wind Farm Non-Technical Summary [EBRD
    1 Non-Technical Executive Summary MARGONIN WIND FARM PROJECT, POLAND 2 Introduction EDP Renovaveis, the worlds fourth largest wind power operator is developing a major wind farm in the central part of Poland - Wielkopolskie Voivodship associated with the construction and development of wind farm projects in the Margonin area by EDP Renovaveis. The aim of this non-technical summary is to ensure that a cumulative assessment of the planned wind farm developments in the region can be presented to enable meaningful public and stakeholders engagement process. Attached to this documents are non-technical resumes which are integral part of the Environmental Impact Assessment Reports which are presented separately. In line with the Polish environmental regulations the need of preparation of an Environmental Impact Assessment is required for this project. General project presentation EDP Renovaveis is a leading international wind power developer, with a number of active wind farms located in the USA, Brazil, Spain, France, Belgium and Portugal. Installed capacity of EDP wind energy increased four-fold between 2005 and 2007, and now the company is among the world top three firms in the world in terms of growth in this sector. As a leading wind developer, the company is committed to guide the business activity in accordance with the sustainable development principles of the EDP Group, including among others: • Efficient use of resources, including the development of cleaner and more efficient energy technology and development of energy generation means based on renewable sources; • Environmental protection with minimization of the environmental impact of all business activities and participation in initiatives that contribute to the conservation of the environment; • Support social development.
    [Show full text]
  • High-Power Energy Scavenging for Portable Devices
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2010 High-Power Energy Scavenging for Portable Devices Simon J. Tritschler Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Engineering Commons Repository Citation Tritschler, Simon J., "High-Power Energy Scavenging for Portable Devices" (2010). Browse all Theses and Dissertations. 997. https://corescholar.libraries.wright.edu/etd_all/997 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. HIGH-POWER ENERGY SCAVENGING FOR PORTABLE DEVICES A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By SIMON JOSEF TRITSCHLER B.S.E.E., Wright State University, 2001 M.S.Egr., Wright State University, 2003 2010 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES 27 May 2010 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Simon Josef Tritschler ENTITLED High-Power Energy Scavenging for Portable Devices BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. ___________________________________ Marian K. Kazimierczuk, Ph.D. Dissertation Director ___________________________________ Ramana V. Grandhi, Ph.D. Director, Ph.D. in Engineering Program Committee on Final Examination ___________________________________ Jack A. Bantle, Ph.D. Vice President for Research and Graduate Studies ___________________________________ and Interim Dean of Graduate Studies Marian K. Kazimierczuk, Ph.D. ___________________________________ Fred D.
    [Show full text]
  • Kyoto Energypark
    Environmental Assessment Nov 2008 Kyoto energypark 21. Summary and Justification Page | 403 Summary and Justification Section 21 - Page | 404 Environmental Assessment Nov 2008 21.0 SUMMARY & JUSTIFICATION 21.1 Key Strategic Planning Issues • The Kyoto Energy Park project is a major initiative in providing large-scale renewable power and distribution for the Upper Hunter region. • The Kyoto Energy Park will be a carbon negative project with overall energy payback period of 6 months for wind turbines and approximately 13 months for the Mt Moobi Solar PV farm. This will represent a positive step in the promotion of the use of renewable energy sources. It will help to reverse potentially catastrophic climate change. • Ongoing employment for up to 15 operation and maintenance professionals. • Regional multiplier effects of between 914 and 1595 job years. • Development of a new skills sectors in the renewable energy industry within the Hunter region. • The project combines three proven, commercialised renewable technologies (solar, wind and hydro) Solar PV offers the fastest deployment of any renewable energy technologies today • Renewable technologies integrated in a complementary way to shave expensive peak demand • Flexibility to easily move the peak supply as the peak demand period moves according to seasons • Reduced peak demand resulting in infrastructure and generation savings • Creation of jobs across various fields (e.g. research, installation, project management) during development and construction • Significant ongoing green collar
    [Show full text]
  • 2014 Electric Reliability Plan (For Information & Discussion Only)
    LOS ALAMOS COUNTY DEPARTMENT OF PUBLIC UTILITIES 2014 ELECTRIC RELIABILITY PLAN (FOR INFORMATION & DISCUSSION ONLY) Rafael De La Torre, PE Deputy Utility Manager, Electric Distribution November 19, 2014 1 2 TABLE OF CONTENTS .................................................................................................................................... 1 Executive Summary .................................................................................................... 5 I. System Overview: ................................................................................................. 7 Los Alamos Power Pool ........................................................................................... 7 Los Alamos Transmission System ........................................................................... 7 LACU Distribution System ....................................................................................... 8 II. Description of Relevant Systems and Impact on Reliability ............................. 10 The Regional Transmission Grid: ........................................................................... 10 The Local Transmission Grid: ................................................................................ 13 The Local Distribution Grid: ................................................................................... 14 Analysis of Performance Measures ....................................................................... 17 SAIDI Comparison with Nearby Utilities ................................................................
    [Show full text]
  • Case 2:14-Cv-01781-SSV-KWR Document 26 Filed 03/12/15 Page 1 of 10
    Case 2:14-cv-01781-SSV-KWR Document 26 Filed 03/12/15 Page 1 of 10 UNITED STATES DISTRICT COURT EASTERN DISTRICT OF LOUISIANA WALTON CONSTRUCTION – A CORE CIVIL ACTION COMPANY, LLC, VERSUS NO: 14-1781 FIRST FINANCIAL INSURANCE COMPANY SECTION: R(2) ORDER AND REASONS This insurance coverage dispute concerns a commercial general liability policy issued by defendant First Financial Insurance Company. Plaintiff Walton Construction seeks a declaration that the policy affords it "additional insured" coverage in an underlying state court tort suit. First Financial seeks a declaration that it has no duty to defend or indemnify Walton. The parties have filed cross motions for summary judgment.1 For the following reasons, the Court denies Walton's motion and grants First Financial's motion. I. BACKGROUND This insurance coverage dispute arises out of a personal injury lawsuit brought by John Maestri against Entergy Louisiana, LLC, in Louisiana state court. Only a few facts are necessary to understand the underlying suit. Entergy is a power company. Maestri worked in construction for A-1 Glass Service, Inc., a 1 R. Doc. 9 (First Financial); R. Doc. 14 (Walton). Case 2:14-cv-01781-SSV-KWR Document 26 Filed 03/12/15 Page 2 of 10 commercial glazier. A-1 worked as a subcontractor to Walton on a construction project for the Jefferson Parish School Board. In March 2012, while Maestri was installing glass as part of that project, an Entergy high-voltage power line electrocuted him, burning his arms, chest, and hands. Maestri sued Entergy for his injuries. After Maestri sued Entergy, Entergy filed a third-party complaint against A-1 and Walton, alleging that the companies had violated the Louisiana Overhead Power Line Safety Act, La.
    [Show full text]
  • Nov HSA 2000
    CONTENTS: Winter Alert - “Someone’s Waiting for You at Home”................................................................................3 MSHA Creates a Coal Waste Dams and Impoundments Webpage Site........................................................4 “Battery Station Ventilation”......................................................................................................................5 “Pre-packaged Belt Move”.........................................................................................................................6 “Dump Shorty”..........................................................................................................................................7 “Railcar/Roller/Risk/Reduction/Remedy”.................................................................................................9 High Voltage Electrical Hazards - (Surface).............................................................................................10 Part 46 Training CD-ROM, Developed Cooperatively Between State and Industry......................................14 A Miner’s Story.........................................................................................................................................15 “Canaries”................................................................................................................................................18 Poem “Waiting”................................................................................................................................................19
    [Show full text]
  • Real-Time Health Monitoring of Power Networks Based on High
    REAL-TIME HEALTH MONITORING OF POWER NETWORKS BASED ON HIGH FREQUENCY BEHAVIOR A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Amir mehdi Pasdar December, 2014 REAL-TIME HEALTH MONITORING OF POWER NETWORKS BASED ON HIGH FREQUENCY BEHAVIOR Amir mehdi Pasdar Dissertation Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Yilmaz Sozer Dr. Abbas Omar _______________________________ _______________________________ Committee Member Dean of the College Dr. Malik Elbuluk Dr. George K. Haritos _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Tom Hartley Dr. George R. Newkome _______________________________ _______________________________ Committee Member Date Dr. Nathan Ida _______________________________ Committee Member Dr. Ping Yi _______________________________ Committee Member Dr. Alper Buldum ii ABSTRACT Sustainable and reliable electric power delivery to the users is critical for the well being of the society. Electric power delivery can be interrupted due to faults in the transmission lines, which can be defined as the flow of a current through an improper path of the power grid. Faults in the power line could cause power interruption, equipment damage, personal injury or death. Knowledge about the health condition of the power network helps to predict the possibility of the future fault occurrences due to the aging or failure of the insulators, conductors or towers. There has been significant research conducted in the past to monitor the health condition of the power grid, which has resulted in many types of sensors being commercially available. The time domain refletometer (TDR) type sensors have been developed for detecting a fault in an off-line long range power line.
    [Show full text]
  • Working Safely Around Electricity
    Working Safely Around Electricity About WorkSafeBC WorkSafeBC (the Workers’ Compensation Board) is an independent provincial statutory agency governed by a Board of Directors. It is funded by insurance premiums paid by registered employers and by investment returns. In administering the Workers Compensation Act, WorkSafeBC remains separate and distinct from government; however, it is accountable to the public through government in its role of protecting and maintaining the overall well-being of the workers’ compensation system. WorkSafeBC was born out of a compromise between B.C.’s workers and employers in 1917 where workers gave up the right to sue their employers or fellow workers for injuries on the job in return for a no-fault insurance program fully paid for by employers. WorkSafeBC is committed to a safe and healthy workplace, and to providing return-to-work rehabilitation and legislated compensation benefits to workers injured as a result of their employment. WorkSafeBC Prevention Information Line The WorkSafeBC Prevention Information Line can answer your questions about workplace health and safety, worker and employer responsibilities, and reporting a workplace accident or incident. The Prevention Information Line accepts anonymous calls. Phone 604.276.3100 in the Lower Mainland, or call 1.888.621.7233 (621.SAFE) toll-free in British Columbia. To report after-hours and weekend accidents and emergencies, call 604.273.7711 in the Lower Mainland, or call 1.866.922.4357 (WCB.HELP) toll-free in British Columbia. BC Hydro Public Safety Information www.bchydro.com/safety For information on overhead power line voltage or to complete WorkSafeBC form 30M33, call the BC Hydro Electric Service Coordination Centre at 1.877.520.1355.
    [Show full text]
  • Living and Working Safely Around High-Voltage Power Lines 1
    LIVING and WORKING SAFELY AROUND HIGH-VOLTAGE POWER LINES 1 igh-voltage power lines can be just as safe as H the electrical wiring in our homes — or just as danger- ous. The key is learning to act rural cooperatives take delivery of the power at these points and deliver it to the ultimate customers. safely around them. BPA’s lines cross all types of property: residential, This booklet is a basic safety guide for those who agricultural, industrial, commercial and recreational. live and work around power lines. It deals primarily with nuisance shocks caused by induced voltages If you have questions about and with possible electric shock hazards from safe practices near contact with high-voltage lines. power lines, call BPA. In preparing this booklet, the Bonneville Power Administration has drawn on more than 70 years Due to safety considerations many of the practices of experience with high-voltage power lines. BPA suggested in this booklet are restrictive. This is operates one of the world’s largest networks of because they attempt to cover all possible situa- long-distance, high-voltage lines, ranging from tions, and the worst conditions are assumed. 69,000 volts to 500,000 volts. This system has In certain circumstances, the restrictions can more than 200 substations and more than be re-evaluated. To determine what practices 15,000 miles of power lines. are applicable to your case, contact BPA at 1-800-836-6619 or find the contact information BPA’s lines make up the main electrical grid for for the local BPA office at www.transmission.bpa.
    [Show full text]
  • Testimony of Citizens Against Overhead Power Line Construction
    Testimony of Citizens Against Overhead Power Line Construction Prepared for the Connecticut Siting Council Docket 370 October 30, 2009 Citizens Against Overhead Power Line Construction Table of Contents Page 2 Citizens Against Overhead Power Line Construction The Connecticut Light & Power Company application for Certificates CT DOCKET No. 370 of Environmental Compatibilitiy and Public Need for the Connecticut Valley Electric Transmission Reliability Projects which consits of (1) The Connecticut portion of the Greater Springfield Reliability Project that traverses the municiplaities of Bloomfield, East Granby, and Suffield, or potentially including an alternate portion that traverses the municipalities of Suffield and Enfield, terminating at the North October 30, 2009 Bloommfield Substation; and (2) the Manchester Substation to Meekville Junction Circuit Separation project in Manchester, Connecticut. Citizens Against Overhead Power Line Construction Pre-filed Testimony Testimony of Richard Legere, ARM Executive Director, CAOPLC 1 Preface 2 3 I am addressing my comments to the CSC first as the Executive Director of Citizens Against Overhead 4 Power Line Construction (CAOPLC). CAOPLC is an organization comprised of approximately 100 families 5 and property owners in East Granby and Suffield who are affected by Docket 370, including property 6 owners who allow the Metacomet Trail to be on their land. 7 8 Second, I am addressing some specific comments as an individual property with concerns about the 9 siting of the power towers on my land. In that regard I would like to make a few specific suggestions to 10 the CSC about how the towers can be sited, if the CSC approves overhead towers over undergrounding 11 of the power lines through the Metacomet/Newgate area.
    [Show full text]
  • H:\IBLA Convert\Converted\180IBLA\WPD\L291-307.Wpd
    MACK ENERGY CORPORATION 180 IBLA 291 Decided January 12, 2011 United States Department of the Interior Office of Hearings and Appeals Interior Board of Land Appeals 801 N. Quincy St., Suite 300 Arlington, VA 22203 MACK ENERGY CORPORATION IBLA 2010-155 Decided January 12, 2011 Appeal from a decision of the Roswell (New Mexico) Field Office, Bureau of Land Management, offering right-of-way grants for a buried power line. NMNM 124105. Set aside and remanded. 1. Federal Land Policy and Management Act of 1976: Rights- of-Way--Rights-of-Way: Applications--Rights-of-Way: Federal Land Policy and Management Act of 1976 Under section 501 of the Federal Land Policy and Management Act of 1976, 43 U.S.C. § 1761 (2006), a decision to reject or issue a right-of-way is discretionary and will be affirmed where the record shows the decision to be based on a reasoned analysis of the facts involved, made with due regard for the public interest, and where appellant fails to show error in the decision. To successfully challenge a discretionary decision, the burden is upon an appellant to demonstrate by a preponderance of the evidence that BLM committed a material error in its factual analysis or that the decision generally is not supported by a record showing that BLM gave due consideration to all relevant factors and acted on the basis of a rational connection between the facts found and the choice made. The Board will set aside a BLM decision requiring an appellant to bury a power line, rather than approving appellant’s application to construct an overhead line, when the appellant demonstrates that there is no rational connection between the facts cited by BLM and the decision made.
    [Show full text]