Risk of Intraocular Hemorrhage with New Oral Anticoagulants G Talany Et Al 629

Total Page:16

File Type:pdf, Size:1020Kb

Risk of Intraocular Hemorrhage with New Oral Anticoagulants G Talany Et Al 629 Eye (2017) 31, 628–631 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-222X/17 www.nature.com/eye 1 1,2 1,2,3 CLINICAL STUDY Risk of intraocular G Talany , M Guo and M Etminan hemorrhage with new oral anticoagulants Abstract Purpose To assess the risk of intraocular Introduction hemorrhage with warfarin and new oral New oral anticoagulants (NOACs) such as anticoagulants (NOACs). dabigatran, rivaroxaban and apixaban have Methods We ascertained all reported cases become popular medications among clinicians. of intraocular hemorrhage (vitreous, In 2014, rivaroxaban accounted for ~ $1.5 billion choroidal, or retinal) with warfarin and in sales, which represented a 76% increase NOACs (including dabigatran, rivaroxaban, compared with 2013.1 The main advantage of apixaban) from the World Health NOACs compared with warfarin is the lack of Organizations’s Vigibase database from coagulation monitoring or dosage adjustments 1968–2015. We used a disproportionality required due to more predictable analysis to compute reported odds ratios 2–4 (RORs) and corresponding 95% confidence by pharmacokinetic properties. Recent studies comparing the number of events with the have examined the risk of bleeding with these 1Faculty of Medicine, study outcomes and study drugs compared drugs, however, information on the risk of University of British ocular bleeding with NOACs is scant. Columbia, Vancouver, BC, with all other drugs reported to Vigibase. Canada A harmful signal was deemed for a lower Anticoagulants help reduce the risk of deep limit of the 95% confidence interval above 1. vein thrombosis, pulmonary embolism, 4 2Department of Results We identified 80 cases of intraocular myocardial infarction, and strokes. In relation Pharmacology and hemorrhage (vitreous, choroidal, or retinal) to ophthalmic indications, anticoagulants have Therapeutics, University of been used in the treatment of coagulation British Columbia, with warfarin in the World Health Organizations’s Vigibase database from abnormalities (such as protein C or S or Vancouver, fi BC, Canada 1968–2015. A total of 156 cases of intraocular antithrombin III de ciencies), and in patients hemorrhage with NOACs (82 with with ischemic optic neuropathies. Despite this 3Department of rivaroxaban, 65 with dabigatran, 9 with reduced risk of serious thromboembolic Ophthalmology and Visual apixaban). Warfarin had the highest signal of phenomena, anticoagulants increase the risk of Sciences, University of hemorrhage. NOACs have also been associated British Columbia, association with choroidal hemorrhage Vancouver, BC, Canada (ROR = 65.40 (33.86–126.30)). Rivaroxaban with an increased risk of hemorrhage due to had the highest signal of association with their mechanisms of binding and neutralizing Correspondence: both retinal and vitreous hemorrhage clotting factors or components of the coagulation 5 M Etminan, Assistant (ROR = 7.41 (5.73–9.59) and ROR = 11.14 cascade. Although this reduces the ability for Department of (7.37–16.86), respectively). Dabigatran was blood to clot and leads to the drug’s therapeutic Ophthalmology and Visual fi potential, NOACs might also lead to a higher Sciences, The University of also signi cantly associated with retinal and British Columbia, The Eye vitreous hemorrhage (ROR = 3.78 (2.82–5.08) propensity for hemorrhaging without an Care Center, Room and ROR = 5.83 (3.66–9.30), respectively). The available antidote.4,6 323–2550 Willow Street, number of reports of retinal and vitreous Operating on an anticoagulated patient has Vancouver BC, V5Z 3N9 hemorrhage were also significantly higher been associated with bloody tears, hyphemas, Canada vitreal, subconjunctival, subretinal, and Tel: +604 875 4725; with apixaban, but the number of cases may 7–12 Fax: +604 875 4663. be too little to make a meaningful evaluation. choroidal hemorrhages. Although most E-mail: etminanm@ Conclusion A signal for risk of intraocular reports of intraocular hemorrhage relate to mail.ubc.ca hemorrhage was detected for warfarin, warfarin, the same effects have been reported – dabigatran, and rivaroxaban. Large less frequently for NOACs.13 15 One well- Received: 13 June 2016 epidemiologic studies are needed to further described case report has linked rivaroxaban to Accepted in revised form: fi fi 16 6 October 2016 con rm these ndings. spontaneous vitreous hemorrhage. Despite Published online: Eye (2017) 31, 628–631; doi:10.1038/eye.2016.265; epidemiologic studies demonstrating a link 23 December 2016 published online 23 December 2016 between oral anticoagulants and intraocular Risk of intraocular hemorrhage with new oral anticoagulants G Talany et al 629 hemorrhage, to our knowledge, no study to date has Table 1 Reporting odds ratios calculated for cases of choroidal, examined and compared the risk of intraocular retinal, and vitreous hemorrhage associated with common hemorrhage with warfarin and NOACs. anticoagulants Drug name/condition Number of Reporting 95% confidence events odds ratio interval Materials and methods Choroidal Hemorrhage We ascertained all reported cases of intraocular Warfarin 12 65.40 (33.86–126.30) hemorrhage (vitreous, choroidal, or retinal) with warfarin Dabigatran 2 13.29 (3.22–54.82) and NOACs (including dabigatran, rivaroxaban, and ’ Retinal hemorrhage apixaban) from the World Health Organizations s – – Warfarin 50 2.67 (1.39 2.30) Vigibase database from 1968 2015. Besides the Dabigatran 45 3.78 (2.82–5.08) pharmaceutical product name and its associated adverse Apixaban 7 3.25 (1.55–6.83) event, the reports do not always include other Rivaroxaban 59 7.41 (5.73–9.59) information such as concomitant disease. 11 582 092 records of spontaneous adverse events were captured in Vitreous hemorrhage Warfarin 18 3.69 (2.32–5.89) the database at the time of study, which were all included Dabigatran 18 5.83 (3.66–9.30) in the disproportionality analysis. Apixaban 2 3.55 (0.89–14.24) We used a disproportionality analysis to compute Rivaroxaban 23 11.14 (7.37–16.86) reported odds ratios (RORs) and corresponding 95% confidence by comparing the number of events with the = – study outcomes and study drugs compared with all other vitreous hemorrhage (ROR 7.41 (5.73 9.59) and = – drugs reported to Vigibase. First, the data mining is ROR 11.14 (7.37 16.86), respectively). Dabigatran was fi performed through drug monitoring databases like the also signi cantly associated with retinal and vitreous = – = WHO’s adverse events reporting database to acquire all hemorrhage (ROR 3.78 (2.82 5.08) and ROR 5.83 – relevant reports of the adverse event and the drug of (3.66 9.30), respectively). See Table 1 for a summary of interest. Then, the number of reports of an event of statistical outputs. The number of reports of retinal and interest associated with the drug of interest is compared vitreous hemorrhage were also higher with apixaban, but with the number of reports of all other adverse events the number of cases may be too little to make a associated with this drug as well as the number of reports meaningful evaluation. of this event associated with all other drugs listed in the database. We only included cases that reported taking one Discussion of the three NOAC medications; cases where two drugs were taken concomitantly were excluded. This approach The results of our study demonstrated a larger proportion examines whether the number of reports of the event is of intraocular hemorrhage linked to warfarin and NOACs statistically higher with the drug in question vs with all compared with other drugs in the WHO database. other drugs in the database.17 A harmful signal was Warfarin had the highest signal of association with deemed for a lower limit of the 95% confidence interval choroidal hemorrhage (Table 1). This is likely due to above 1.18 Since this is a hypothesis-generating warfarin’s longer history of use, hence a heavier observational study, statistical power is ascertained from predisposition to report hemorrhage incidents with the the width of the confidence intervals. If results are drug, resulting in a higher number of reported incidents statistically significant (that is, the lower bound exceeds involving choroidal hemorrhage. Rivaroxaban had the 1), adequate statistical power is reached. highest signal of association with both retinal and vitreous hemorrhage despite being FDA-approved, a year later than dabigatran. This suggests a higher risk of retinal Results and vitreous hemorrhage in rivaroxaban users compared We identified 80 cases of intraocular hemorrhage with dabigatran. Apixaban was least associated with (vitreous, choroidal, or retinal) with warfarin in the World either condition, likely due to a smaller number of Health Organizations’s Vigibase database from 1968–2015 reported cases, as apixaban is the latest of the drug class (Table 1). A total of 156 cases of intraocular hemorrhage to be approved by the FDA (as of 2012).19 with NOACs (82 cases with rivaroxaban, 65 with ThereisstrongbiologicalevidenceastowhyWarfarin dabigatran, and 9 with apixaban). Warfarin had the and NOACs may result in intraocular hemorrhage. highest signal of association with choroidal hemorrhage Warfarin inhibits vitamin K utilization, which reduces the (ROR = 65.40 (33.86–126.30)). Rivaroxaban had the activation of prothrombin complex proteins and the activity highest signal of association with both retinal and of clotting factors, effectively slowing thrombin generation Eye Risk of intraocular hemorrhage with new oral anticoagulants G Talany et al 630 – and clot formation.2 4 NOACs such as rivaroxaban and increase its apparent risk of certain adverse events. apixaban are specific inhibitors of factor Xa, and dabigatran Although in the same class of drugs, the mechanism by – is a direct thrombin inhibitor.3 5 Reducing the risk of which NOACs are distributed and eliminated from the – forming a clot increases hemorrhagic diathesis,3 5 which body are different from warfarin. Hence, preventing a increases the risk of intraocular hemorrhage. direct comparison in dosage and the resulting risk of Intraocular hemorrhage is a serious adverse event for adverse events.
Recommended publications
  • Retinal Disease Nick Cassotis, DVM, Dipl
    Thank you to our sponsor! Retinal disease Nick Cassotis, DVM, Dipl. ACVO Evaluation of the ocular fundus and establishing a diagnosis of retinal disease are complicated by good visualization of the posterior portion of the eye. The two methods for evaluation of the retina and optic nerve head are direct ophthalmoscopy and indirect ophthalmoscopy. Direct ophthalmoscopy creates a very magnified view of the optic nerve head and the immediate surrounding retina. This allows for excellent visualization of the optic nerve, however, is considered by most ophthalmologists to be a poor way of understanding the health and structure of the posterior ocular tissues. Indirect ophthalmoscopy is almost exclusively used by veterinary ophthalmologists for evaluation of the animal fundus. This examination skill requires very little instrumentation: either a 20 or 28 diopter lens and a light source. Pupillary dilation with tropicamide (not atropine) will facilitate easy visualization. As a beginner, you will benefit from pupillary dilation, holding the light source in your right hand close to your face, obtaining a tapetal reflection (aim from a low angle toward the tapetum) and hold the lens 3-5cm from the cornea in your outstretched left hand. You will benefit from a technician holding the patient’s eyelids open. Practice until this is a quick and easily performed technique. The lecture reviews techniques for indirect ophthalmoscopy and video indirect ophthalmoscopy in an effort to increase the use of this particular skillset in general practice. Indirect ophthalmoscopy improves visualization of the entire retina and optic nerve head. The technique will be compared to the more commonly performed and often blurry overmagnified direct ophthalmoscopy.
    [Show full text]
  • Intraocular Foreign Body: Diagnostic Protocols and Treatment Strategies in Ocular Trauma Patients
    Journal of Clinical Medicine Article Intraocular Foreign Body: Diagnostic Protocols and Treatment Strategies in Ocular Trauma Patients Hyun Chul Jung 1, Sang Yoon Lee 2, Chang Ki Yoon 1, Un Chul Park 1 , Jang Won Heo 3 and Eun Kyoung Lee 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea; [email protected] (H.C.J.); [email protected] (C.K.Y.); [email protected] (U.C.P.) 2 Department of Ophthalmology, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea; [email protected] 3 The One Seoul Eye Clinic, Seoul 06035, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2072-2053 Abstract: Intraocular foreign bodies (IOFBs) are critical ophthalmic emergencies that require urgent diagnosis and treatment to prevent blindness or globe loss. This study aimed to examine the various clinical presentations of IOFBs, determine the prognostic factors for final visual outcomes, establish diagnostic protocols, and update treatment strategies for patients with IOFBs. We retrospectively reviewed patients with IOFBs between 2005 and 2019. The mean age of the patients was 46.7 years, and the most common mechanism of injury was hammering (32.7%). The most common location of IOFBs was the retina and choroid (57.7%), and the IOFBs were mainly metal (76.9%). Multivariate regression analysis showed that poor final visual outcomes (<20/200) were associated with posterior segment IOFBs (odds ratio (OR) = 11.556, p = 0.033) and retinal detachment (OR = 4.781, p = 0.034). Diagnosing a retained IOFB is essential for establishing the management of patients with ocular trauma.
    [Show full text]
  • Diagnosis and Management of Vitreous Hemorrhage
    American Academy of Ophthalmology OCAL CLINICAL MODULES FOR OPHTHALMOLOGISTS VOLUME XVIII NUMBER 10 DECEMBER 2000 (SECTION 1 OF 3) Diagnosis and Management of Vitreous Hemorrhage Andrew W. Eller, M.D. Reviewers and Contributing Editors Editors for Retina and Vitreous: Dennis M. Marcus, M.D. Paul Sternberg, Jr., M.D. Basic and Clinical Science Course Faculty, Section 12: Harry W. Flynn, Jr., M.D. Consultants Practicing Ophthalmologists Advisory Committee Dennis M. Marcus, M.D. for Education: Edgar L. Thomas, M.D. Rick D. Isernhagen, M.D. l]~ THE fOUNDATION [liO) LIFELONG EDUCATION ~OF THE AMERICAN ACADEMY FOR THE OPHTHALMOLOGIST OF OPHTHALMOLOGY Focal Points Editorial Review Board Diagnosis and Management of Michael W Belin, M.D., Albany, NY; Editor-in-Chief; Cornea, Vitreous Hemorrhage External Disease & Refractive Surgery; Optics & Refraction • Charles Henry, M.D., Little Rock, AR; Glaucoma • Careen Yen Lowder, M.D., Ph.D., Cleveland , OH; Ocular Inflammation & INTRODUCTION Tumors • Dennis M. Marcus, M .D., Augusta, GA; Retina & Vitreous • Jeffrey A. Nerad, M.D., Iowa City, IA; Oculoplastic, PATHOGENESIS Lacrimal & Orbital Surgery • Priscilla Perry, M.D., Monroe, Neovascularization of Retina and Disc LA; Cataract Surgery; Liaison for Practicing Ophthalmologists Rupture of a Normal Retinal Vessel Advisory Committee for Education • Lyn A. Sedwick, M.D., Diseased Retinal Vessels Orlando, FL; Neuro-Ophthalmology • Kenneth W. Wright, M.D., Los Angeles, CA; Pediatric Ophthalmology & Strabismus Extension Through the Retina CLINICAL MANIFESTATIONS Focal Points Staff History Susan R. Keller, Managing Editor • Kevin Gleason and Victoria Vandenberg, Medical Editors Ocular Examination DIAGNOSTIC STUDIES Clinical Education Secretaries and Staff Thomas A. Weingeist, Ph.D., M.D., Iowa City, IA; Senior B-Scan Ultrasound Secretary • Michael A.
    [Show full text]
  • Search Strategies for Identifying Systematic Reviews in Eyes and Vision Research
    Page 1 of 5 Search Strategies for Identifying Systematic Reviews in Eyes and Vision Research Page 2 of 5 PubMed Search strategies for identifying eyes and vision systematic reviews (ABNORMAL ACCOMMODATION[tiab] OR Abnormal color vision[tiab] OR ABNORMAL LACRIMATION[tiab] OR Abnormal vision[tiab] OR accommodative disorders[tiab] OR Amblyopia[tiab] OR Ametropia[tiab] OR ANISOCORIA[tiab] OR ANOPHTHALMIA[tiab] OR Anterior CHAMBER hemorrhage[tiab] OR Aphakia[tiab] OR aqueous outflow obstruction[tiab] OR Asthenopia[tiab] OR Balint's syndrome[tiab] OR Bilateral visual field constriction[tiab] OR Binocular Vision Disorder[tiab] OR BLEPHARITIS[tiab] OR BLEPHAROSPASM[tiab] OR BLINDNESS[tiab] OR blurred vision[tiab] OR CATARACT[tiab] OR Cataracts[tiab] OR Chorioretinal disorder[tiab] OR Chorioretinitis[tiab] OR Choroid Diseases[tiab] OR Choroidal[tiab] OR Choroiditis[tiab] OR CHROMATOPSIA[tiab] OR Color Blindness[tiab] OR Color Vision Defects[tiab] OR Color vision deficiency[tiab] OR Colour blindness[tiab] OR Conjunctival Diseases[tiab] OR CONJUNCTIVAL HAEMORRHAGE[tiab] OR Conjunctival Injury[tiab] OR CONJUNCTIVAL ULCERATION[tiab] OR CONJUNCTIVITIS[tiab] OR CORNEAL DEPOSITS[tiab] OR Corneal Diseases[tiab] OR Corneal Disorder[tiab] OR Corneal injuries[tiab] OR Corneal Injury[tiab] OR CORNEAL OEDEMA[tiab] OR CORNEAL OPACITY[tiab] OR CORNEAL ULCERATION[tiab] OR decreased Lacrimation[tiab] OR Decreased vision[tiab] OR defective vision[tiab] OR Delayed visual maturation[tiab] OR Difficulty seeing[tiab] OR difficulty with vision[tiab] OR Dim vision[tiab]
    [Show full text]
  • The Reasons for Evisceration After Penetrating Keratoplasty Between 1995 and 2015 As Causas De Evisceração Após Ceratoplastia Penetrante Entre 1995 E 2015
    ORIGINAL ARTICLE The reasons for evisceration after penetrating keratoplasty between 1995 and 2015 As causas de evisceração após ceratoplastia penetrante entre 1995 e 2015 EVIN SINGAR OZDEMIR1, AYSE BURCU1, ZULEYHA YALNIZ AKKAYA1, FIRDEVS ORNEK1 ABSTRACT RESUMO Purpose: The purpose of this study was to determine the indications and frequency Objetivo: O objetivo deste estudo foi determinar as indicações e a frequência de of evisceration after penetrating keratoplasty (PK). evisceração ocular após cirurgia de ceratoplastia penetrante ou transplante de Methods: The medical records of all patients who underwent evisceration after PK córnea (PK). between January 1, 1995 and December 31, 2015 at Ankara Training and Research Métodos: Foram analisados os registros médicos de todos os pacientes submetidos à Hospital were reviewed. Patient demographics and the surgical indications for evisceração após PK entre 1o de janeiro de 1995 e 31 de dezembro de 2015 no Hospital PK, diagnosis for evisceration, frequency of evisceration, and the length of time de Treinamento e Pesquisa de Ankara. Foram registradas a demografia do paciente e between PK and evisceration were recorded. as indicações cirúrgicas de PK, diagnóstico de evisceração, frequência de evisceração, Results: The frequency of evisceration was 0.95% (16 of 1684), and the mean age tempo entre PK e evisceração. of the patients who underwent evisceration was 56.31 ± 14.82 years. The most Resultados: A frequência de evisceração foi de 0,95% (16 de 1684) e a média de idade common indication for PK that resulted in evisceration was keratoconus (37.5%), and foi de 56,31 ± 14,82 anos. A indicação mais comum para PK que terminou na evis­ the most common underlying cause leading to evisceration was endophthalmitis ceração foi o ceratocone (37,5%) e a causa subjacente à evisceração foi a endoftalmite (56.25%).
    [Show full text]
  • Major Review
    SURVEY OF OPHTHALMOLOGY VOLUME 47 • NUMBER 4 • JULY–AUGUST 2002 MAJOR REVIEW Management of Traumatic Hyphema William Walton, MD, Stanley Von Hagen, PhD, Ruben Grigorian, MD, and Marco Zarbin, MD, PhD Institute of Ophthalmology and Visual Science, New Jersey Medical School, Newark, New Jersey, USA Abstract. Hyphema (blood in the anterior chamber) can occur after blunt or lacerating trauma, after intraocular surgery, spontaneously (e.g., in conditions such as rubeosis iridis, juvenile xanthogranu- loma, iris melanoma, myotonic dystrophy, keratouveitis (e.g., herpes zoster), leukemia, hemophilia, von Willebrand disease, and in association with the use of substances that alter platelet or thrombin function (e.g., ethanol, aspirin, warfarin). The purpose of this review is to consider the management of hyphemas that occur after closed globe trauma. Complications of traumatic hyphema include increased intraocular pressure, peripheral anterior synechiae, optic atrophy, corneal bloodstaining, secondary hemorrhage, and accommodative impairment. The reported incidence of secondary ante- rior chamber hemorrhage, that is, rebleeding, in the setting of traumatic hyphema ranges from 0% to 38%. The risk of secondary hemorrhage may be higher in African-Americans than in whites. Secondary hemorrhage is generally thought to convey a worse visual prognosis, although the outcome may depend more directly on the size of the hyphema and the severity of associated ocular injuries. Some issues involved in managing a patient with hyphema are: use of various medications (e.g., cycloplegics, systemic or topical steroids, antifibrinolytic agents, analgesics, and antiglaucoma medications); the patient’s activity level; use of a patch and shield; outpatient vs. inpatient management; and medical vs. surgical management.
    [Show full text]
  • Ocular Hemorrhage
    Volume 11, Issue 3 WINTER 2013-14 OCULAR A QUARTERLY PUBLICATION FOR THE VETERINARY COMMUNITYOutlook FROM EYE CARE FOR ANIMALS OCULAR HEMORRHAGE: WHAT’S THE BLOODY CAUSE? thrombocytopenia), uveitis, and retinal detachment, but the latter three conditions could occur alone in the absence of infection. A few specific causes and presentations are discussed. Traumatic injuries to the globe or adnexa include lacerations, proptosis, crushing injuries (e.g., animal bite), blunt-force trauma (e.g., being hit by a ball), and penetrating corneal Figure 3: Subconjunctival and foreign bodies (Figure 3). Trauma is intraocular hemorrhage in a cat the obvious cause with lacerations, following trauma. penetrating injuries, and most cases when assuming trauma in other of proptosis, but caution is advised instances. Consider the client who is adamant their pet “hit its head on B. Keith Collins, the table” to cause blood in the eye. DVM, MS, DACVO However, pre-existing disease might Ocular hemorrhage is common have contributed to the incident or and can affect the orbit, adnexa, or exacerbated the result. A unilateral intraocular structures. Intraocular visual deficit (e.g., retinal detachment) bleeding is most often encountered, for which the owner was unaware and blood can be present in the could have caused the pet to hit its anterior chamber (hyphema), the eye on the affected side. Alternatively, posterior segment (or vitreous), undiagnosed thrombocytopenia could or the retina. Intralenticular cause hemorrhage after an otherwise bleeding is rarely observed unless Figure 1: Iris hemorrhages in a dog insignificant injury. Always look for a associated with a congenital disorder. with Rocky Mountain Spotted Fever.
    [Show full text]
  • Small-Molecule Modulation of Ppars for the Treatment of Prevalent Vascular Retinal Diseases
    International Journal of Molecular Sciences Review Small-Molecule Modulation of PPARs for the Treatment of Prevalent Vascular Retinal Diseases Xiaozheng Dou 1 and Adam S. Duerfeldt 2,* 1 Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46656, USA; [email protected] 2 Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA * Correspondence: [email protected]; Tel.: +405-325-2232 Received: 20 October 2020; Accepted: 2 December 2020; Published: 4 December 2020 Abstract: Vascular-related retinal diseases dramatically impact quality of life and create a substantial burden on the healthcare system. Age-related macular degeneration, diabetic retinopathy,and retinopathy of prematurity are leading causes of irreversible blindness. In recent years, the scientific community has made great progress in understanding the pathology of these diseases and recent discoveries have identified promising new treatment strategies. Specifically, compelling biochemical and clinical evidence is arising that small-molecule modulation of peroxisome proliferator-activated receptors (PPARs) represents a promising approach to simultaneously address many of the pathological drivers of these vascular-related retinal diseases. This has excited academic and pharmaceutical researchers towards developing new and potent PPAR ligands. This review highlights recent developments in PPAR ligand discovery and discusses the downstream effects of targeting PPARs as a therapeutic approach to treating retinal vascular diseases.
    [Show full text]
  • Differential Diagnoses
    Differential diagnoses RETINA • CNVM Degenerative ARMD myopic degeneration angioid streaks choroidal hemangioma juxtafoveal retinal telangiectasia osteogenesis imperfecta optic nerve head pit retinochoroidal coloboma tilted optic disc Heredodegenerative Vitelliform macular dystrophy Fundus flavimaculatus Optic nerve head drusen choroideremia RP with exudate Inflammatory Ocular histoplasmosis syndrome Multifocal choroiditis (white dot syndromes) Serpiginous choroiditis Toxoplasmosis Toxocariasis Rubella Vogt-Koyanagi-Harada syndrome Behcet syndrome Sympathetic ophthalmia Central serous retinopathy sarcoid syphilis chronic uveitis AMPEE Neoplastic Choroidal nevus Choroidal hemangioma Metastatic choroidal tumors Hamartoma of the RPE choroidal osteoma malignant melanoma optic nerve glioma with chronically swollen nerve Traumatic Choroidal rupture Intense photocoagulation IOFB retinal cryoinjury surgical trauma subretinal fluid drainage site Idiopathic • CME post-op Irvine-Gass syndrome corneal surgery retinal surgery laser iridotomy cryo for retinal tear PRP aphakia pseudophakia inherited / dystrophies RP autosomal dominant CME juvenile retinoschisis Goldmann-Favre disease medications Xalatan topical epinephrine nicotinic acid tumors differentials 1 choroidal melanoma / nevi choroidal hemangioma retinal capillary hemangioma tractional ERM vitreomacular traction syndrome inflammatory Eale's CMV pars planitis Behcet Birdshot sarcoidosis idiopathic vitritis scleritis toxo vascular DR CRVO BRVO OIS retinal juxtafoveal telangiectasia CNVM Coat's
    [Show full text]
  • Anterior and Posterior Case Presentations 2020
    Anterior and Posterior Segment Case Presentations Enough Pearls to Make a Necklace Greg Caldwell, OD, FAAO November 13, 20/20 Disclosures- Greg Caldwell, OD, FAAO $ Will mention many products, instruments and companies during our discussion ¬ I don’t have any financial interest in any of these products, instruments or companies $ Pennsylvania Optometric Association –President 2010 2 POA Board of Directors 2006-2011 $ American Optometric Association, Trustee 2013-2016 $ I never used or will use my volunteer positions to further my lecturing career $ Lectured for: Alcon, Allergan, Aerie, BioTissue, Maculogix, Optovue $ Advisory Board: Allergan, Kala, Maculogix, Sun $ Envolve: PA Medical Director, Credential Committee $ HealthCare Registries: Consultant $ Optometric Education Consultants - Scottsdale, WDW, St. Paul, Quebec City, and Nashville, Owner Learning Objectives $Emphasize clinical diagnosis of anterior and posterior segment disease. $Strengthen clinical treatment of anterior and posterior segment disease. $Heighten the clinician’s comfort level when treating disease with topical and/or oral medications. $Gain confidence in ordering and interpreting diagnostic and laboratory tests. $Gain confidence in making a subspecialty referral Optometric Public Service Announcement Pay Very Close Attention 80-year-old man $Reports a sudden loss of vision OD $Vision is count fingers at 2 feet OD and 20/25 OS $APD OD grade 4 $Fundus photos OU Photos OU CRAO Treatment/Work-Up/Follow-Up? $Anterior chamber paracentesis (less than 24 hours) $STAT blood
    [Show full text]
  • Terson's Syndrome-Rate and Surgical Approach in Patients With
    Terson’s SyndromedRate and Surgical Approach in Patients with Subarachnoid Hemorrhage A Prospective Interdisciplinary Study Christos Skevas, MD,1,* Patrick Czorlich, MD,2,* Volker Knospe, MD,1 Birthe Stemplewitz, MD,1 Gisbert Richard, MD,1 Manfred Westphal, MD,2 Jan Regelsberger, MD,2 Lars Wagenfeld, MD1 Objectives: To analyze the need for surgical intervention in Terson’s syndrome (TS) and the rate of TS, as well as the effect of pars plana vitrectomy (PPV) with or without internal limiting membrane (ILM) peeling, com- plications, correlations between TS and sex, and the influence of the severity of subarachnoid hemorrhage (SAH) expressed by Glasgow Coma Scale (GCS) score and Hunt and Hess grade on the occurrence of TS. Design: Prospective, uncontrolled, interdisciplinary study. Participants: A total of 102 patients with SAH over a period of 24 months. Methods: Patients were examined on days 1 and 14. A PPV was indicated in cases of nonresorbing vitreous hemorrhage (VH). Peeling of the ILM was performed with the help of ILM-BLUE (DORC, Zuidland, The Netherlands) using end-gripping ILM forceps. Main Outcome Measures: Effect of PPV on visual acuity (VA) and timing of intervention in cases of non- resorbing VH. Results: The rate of TS was 19.6% (20/102). The mean age of the patients was 52.1Æ11.8 years. Patients presenting with an initial GCS of less than 8 or with high Hunt and Hess grades were more affected by TS. Eight (9 eyes) of the 20 patients with TS (40% of the patients with TS) underwent a PPV for nonclearing vitreous bleeding.
    [Show full text]
  • Recurrent Intraocular Hemorrhage Secondary to Cataract Wound Neovascularization (Swan Syndrome)
    Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome) John J. Chen MD, PhD; Young H. Kwon MD, PhD August 6, 2012 Chief complaint: Recurrent vitreous hemorrhAge, left eye History of Present Illness A 33 yeAr-old male with history of bilateral aphakia s/p intrAcApsulAr cAtArAct extrAction (ICCE) of dislocAted lenses At Age 13 presented with recurrent episodes of floaters And blurred vision in the left eye over the pAst yeAr. These episodes lasted Anywhere between one hour And half A day, And were initiAlly once per month but had been increAsing in frequency And were occurring at least twice A week at time of initial presentation. He wAs found to have vitreous hemorrhage on exAminAtion by his locAl eye doctor And wAs referred to the University of IowA for further evaluAtion. Past Ocular History: AphAkiA in both eyes (OU) s/p ICCE for dislocAted lenses At the Age of 13 Past Medical History: • MarfAn’s syndrome • Hypertension Medications: metoprolol Allergies: None Family History: MarfAn’s syndrome in his fAther And son, both hAve dislocAted lenses Social History: non-contributory Review of systems: non-contributory Ocular exam: Visual acuity: • Right eye (OD): 20/30-2 • Left eye (OS): 20/50 Pupils: ReActive to light in eAch eye from 4 mm in the dArk to 3 mm in the light. No relAtive Afferent pupillAry defect (RAPD). Extraocular movements: Full OU Confrontation visual fields: Full OU Intra-ocular pressure: • OD: 10 mmHg • OS: 10 mmHg Current prescription: • OD: +11.50+1.00*105 +2.50 • OS: +10.75+0.75*104 +2.50 External DownslAnting pAlpebrAl fissures And mAlAr hypoplAsiA Figure 1: Slit lamp photograph of the left eye Slit lamp exam: demonstrAting the ICCE scAr superiorly And A hint of vessels superotemporally within the wound.
    [Show full text]