Biomarker Identification in Human Lung Adenocarcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Biomarker Identification in Human Lung Adenocarcinoma Research Collection Doctoral Thesis Activity-based proteomics biomarker identification in human lung adenocarcinoma Author(s): Wiedl, Thomas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006698733 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH Nr. 19704 Activity-based proteomics: biomarker identification in human lung adenocarcinoma A dissertation submitted to the ETH Zurich for the degree of Doctor of Sciences (Dr. sc. ETH Zurich) presented by Thomas Wiedl Dipl. Ing., Vienna University of Technology, Austria Born March 30, 1981 Citizen of Austria accepted on the recommendation of Prof. Dr. Rudolf Aebersold (examiner) Prof. Dr. Walter Weder (co-examiner) Prof. Dr. Holger Moch (co-examiner) Prof. Dr. Stephan Sieber (co-examiner) 2011 Table of contents SUMMARY 6 ZUSAMMENFASSUNG 8 ACKNOWLEDGEMENTS 10 ABBREVIATIONS 12 1. INTRODUCTION 14 1.1 LUNG CANCER : CLASSIFICATION , EPIDEMIOLOGY AND PROGNOSIS 14 1.2 MOLECULAR EVOLUTION OF LUNG CANCER 16 1.3 LUNG CANCER AND THE BIOMARKER CONCEPT : STATUS QUO 18 1.4 MASS SPECTROMETRY (MS) BASED PROTEOMICS 20 1.5 ACTIVITY -BASED PROTEOMICS : A NOVEL STRATEGY FOR BIOMARKER DISCOVERY 23 1.6 THE SERINE HYDROLASE SUPERFAMILY 26 1.7 LUNG CANCER IN THE FUTURE 29 2. MATERIAL AND METHODS 30 2.1 SAMPLE COLLECTION 30 2.2 CELL CULTURE AND LYSIS 31 2.3 WESTERN BLOT 31 2.4 ACTIVITY -BASED PROBE 32 2.5 PROTEOME PREPARATION FOR LC-MS/MS ANALYSIS 33 2.6 LC-MS/MS ANALYSIS 35 2.7 DATABASE SEARCH AND LABEL -FREE QUANTIFICATION 36 2.8 STATISTICAL ANALYSIS 37 3. RESULTS 42 3.1 1D-SDS-PAGE DEPENDENT ACTIVITY -BASED PROTEOMICS 42 3.1.1 SH ACTIVITY PROFILES OF CALU-3 CELL EXTRACTS (MEMBRANE FRACTION ) 42 3.1.2 SH ACTIVITY PROFILES OF CALU-3 CELL EXTRACTS (SOLUBLE FRACTION ) 45 3.1.3 SH ACTIVITY PROFILES OF HUMAN LUNG ADENOCARCINOMA BIOPSIES 48 3.2 A MASS SPECTROMETRY (MS) DEPENDENT PLATFORM FOR ACTIVITY -BASED BIOMARKER DISCOVERY 50 3.2.1 CONSIDERATIONS FOR A SOLELY MS DEPENDENT ACTIVITY -BASED BIOMARKER DISCOVERY PLATFORM 50 3.2.2 ACTIVITY -BASED PROBES : FP-BIOTIN AND FP-1 51 3.2.3 DIRECTED IDENTIFICATION OF ACTIVE SH S IN COMPLEX PROTEOMES 53 3.2.4 LABEL -FREE QUANTIFICATION WITH PROGENESIS LC-MS 54 3.2.5 REPEATABILITY , REPRODUCIBILITY AND ROBUSTNESS 54 3.3 SH ACTIVITY PROFILES IN HUMAN LUNG ADENOCARCINOMA 58 3.4 BIOMARKER IDENTIFICATION 60 3.5 COMPARISON OF ACTIVITY- AND TRANSCRIPT -LEVELS OF ESD AND ABHD11 64 4. DISCUSSION 66 4.1 ACTIVITY -BASED PROTEOMIC STRATEGIES FOR THE INVESTIGATION OF SH ACTIVITIES IN COMPLEX PROTEOMES 66 4.1.1 AN ADVANCED STRATEGY FOR THE IDENTIFICATION OF SH ACTIVITIES IN COMPLEX PROTEOMES 67 4.1.2 LABEL -FREE QUANTIFICATION 69 4.1.3 REPEATABILITY , REPRODUCIBILITY AND ROBUSTNESS 70 4.1.4 ACTIVITY -BASED PROTEOMICS AND BIOMARKER DISCOVERY : TECHNICAL ASPECTS 72 4.2 SH ACTIVITIES AND HUMAN LUNG ADENOCARCINOMA 73 4.2.1 GLOBAL SH ACTIVITY PROFILES AS POTENTIAL BIOMARKERS FOR HUMAN LUNG ADENOCARCINOMA 73 4.2.2 SH ACTIVITIES ASSOCIATED WITH HUMAN LUNG ADENOCARCINOMA 77 4.2.3 IDENTIFICATION OF ESD AND ABHD11 ACTIVITIES AS BIOMARKER CANDIDATES FOR HUMAN LUNG ADENOCARCINOMA 80 4.2.3.1 ESTERASE D (ESD) 80 4.2.3.2 ABHYDROLASE DOMAIN -CONTAINING PROTEIN 11 (ABHD11) 82 4.2.4 THE POTENTIAL OF ENZYMATIC ACTIVITIES AS CLINICAL BIOMARKERS : CHANCES AND LIMITATIONS 83 5. CONCLUSION 85 SUPPLEMENTARY DATA 88 PUBLICATIONS 104 REFERENCES 109 CURRICULUM VITAE 124 Summary 6 Summary Lung cancer is the leading cause of all cancer related deaths worldwide. The 5-year survival rate ranges from 80% in early stages to less than 5% in advanced disease. Non-small cell lung carcinoma (NSCLC) accounts for 80% of all lung malignancies, 40% of which are adenocarcinomas (ACs) representing one of the most common lung cancer subtypes. Currently, prognosis is mostly determined based on the extension of disease at diagnosis. Thereby it has become evident that predicted and real outcomes can vary significantly, even for patients with the same stage of disease. Thus, novel biomarkers that refine prognosis with a reliable clinical significance are clearly needed. In the genomic era biomarker studies typically aim at comparing transcript or protein abundances in malignant versus healthy tissues. However, taking into consideration that transcript and protein levels do not necessarily correlate with activity states, protein- and gene-expression profiling experiments might fail to detect changes in enzymatic activities caused by posttranslational events. Activity-based proteomics, a methodology that allows for the determination of enzymatic activity profiles of specific classes of enzymes even in complex proteomes, has become a valid option to circumvent this limitation. Based on the work of Prof. Cravatt, The Scripps Research Institute, USA and others an advanced activity-based proteomics platform for clinical biomarker discovery is presented in this PhD study. The implemented methodology was applied on 40 pairs of malignant and matching non- neoplastic human lung tissues to evaluate the potential of serine hydrolase (SH) activities, a large and diverse class of enzymes that have previously been linked to malignancies of the lung, as potential biomarker candidates for human lung adenocarcinoma. The implemented methodology represents a label-free, solely mass spectrometry (MS) dependent platform for relative quantification of enzymatic activities in complex proteomes. Key features of this platform include good repeatability and reproducibility on a qualitative level as well as high quantitative precision. The results of this study revealed that the SHs TPSB2 protein, LYPLA1, LYPLAL1, IAH1, ABHD10 and ABHD11 exhibited decreased or elevated activities in Summary 7 lung adenocarcinoma biopsies compared to matching non-neoplastic tissues in an almost exclusive manner, indicating that these enzymes play a general role in the pathogenesis of lung adenocarcinoma. On a transcript level, ESD , TPBS2 , IAH1 and ABHD10 did not show any differences in lung cancer biopsies compared to normal tissues of the respiratory system as determined with a publicly accessible gene expression database. These observations indicate that the found SH activity differences are not detectable on a transcript level. Furthermore, the activities of ESD predicted the presence of high-grade tumors and the activities of ABHD11 predicted the development of distant metastases, both in a statistically significant model (p<0.05). Importantly, neither ESD nor ABHD11 have previously been associated with NSCLC. Although data validation with an increased sample set will be required to perform clinically more relevant statistical analysis, we anticipate that ESD and / or ABHD11 activities have the potential to develop into molecular predictors with a reliable clinical significance. We conclude that the implemented activity-based proteomics platform represents a powerful tool in the search for novel disease biomarkers and that SH activities bear predictive potential for human lung adenocarcinoma. Zusammenfassung 8 Zusammenfassung Das Lungenkarzinom ist weltweit die häufigste Ursache aller krebsbedingten Todesfälle. Ausgehend vom Zeitpunkt der Diagnosestellung erstreckt sich die 5- Jahres-Überlebensrate von 80% in frühen Stadien bis hin zu 5% bei fortgeschrittener Erkrankung. Das nicht-kleinzellige Lungenkarzinom (NSCLC) repräsentiert dabei 80% aller Lungenkarzinome, 40% davon werden dem Subtyp Adenokarzinom (AC) zugeordnet, einer der häufigsten Histologien des Lungenkarzinoms. Zurzeit basiert die Krankheitsprognose auf der Einschätzung des Ausmasses der Krebserkrankung bei Diagnosestellung. Dabei stellte sich heraus, dass sich der prediktierte und tatsächliche Krankheitsverlauf signifikant unterscheiden können, selbst bei Patienten mit initial identischer Prognose. Um die Prediktion der Krankheitsverläufe zu verbessern werden molekulare Biomarker mit einer zuverlässigen klinischen Relevanz benötigt. Im Zeitalter der Genomik zielen Biomarkerstudien typischerweise darauf ab, Transkript- oder Proteinabundanzen in gesundem und malignem Gewebe zu vergleichen. Wenn man bedenkt, dass Transkript- oder Proteinabundanzen nicht unbedingt mit enzymatischen Aktivitäten korrelieren, besteht die Möglichkeit, dass durch konventionelle Protein- und Genexpressionsstudien Differenzen in Enzymaktivitäten aufgrund von posttranslationalen Modifikationen nicht detektiert werden. Durch direkte Messung von Aktivitätszuständen bestimmter Enzymklassen selbst in komplexen Proteomen, bietet die Methode der aktivitäts-basierenden Proteomik die Möglichkeit diese Einschränkung zu umgehen. Aufbauend auf der Arbeit von Prof. Cravatt, The Scripps Research Institute, USA und anderen stellen wir im Rahmen dieser Doktorarbeit eine weiterentwickelte, auf der Messung von Enzymaktivitäten basierende Plattform für die Identifikation von klinischen Biomarkern vor. Mit der implementierten Methode wurden 40 humane Lungen- Adenokarzinom Biopsien und korrespondierende normale Lungengewebe untersucht, um das Potential von Serinhydrolase (SH) Aktivitäten hinsichtlich ihrer Eignung als Biomarker zu eruieren. Für diese Studie stellten SHs eine interessante Gruppe von Proteinen dar, da einzelne Mitglieder dieser Enzymfamilie bereits mit dem Lungenkarzinom in Verbindung gebracht wurden. Zusammenfassung 9 Die in dieser Doktorarbeit vorgestellte Methode stellt eine auf Massenspektrometrie (MS) basierende Analyseplattform
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0346364 A1 BRUNS Et Al
    US 2016.0346364A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0346364 A1 BRUNS et al. (43) Pub. Date: Dec. 1, 2016 (54) MEDICAMENT AND METHOD FOR (52) U.S. Cl. TREATING INNATE IMMUNE RESPONSE CPC ........... A61K 38/488 (2013.01); A61K 38/482 DISEASES (2013.01); C12Y 304/23019 (2013.01); C12Y 304/21026 (2013.01); C12Y 304/23018 (71) Applicant: DSM IPASSETS B.V., Heerlen (NL) (2013.01); A61K 9/0053 (2013.01); C12N 9/62 (2013.01); A23L 29/06 (2016.08); A2ID 8/042 (72) Inventors: Maaike Johanna BRUINS, Kaiseraugst (2013.01); A23L 5/25 (2016.08); A23V (CH); Luppo EDENS, Kaiseraugst 2002/00 (2013.01) (CH); Lenneke NAN, Kaiseraugst (CH) (57) ABSTRACT (21) Appl. No.: 15/101,630 This invention relates to a medicament or a dietary Supple (22) PCT Filed: Dec. 11, 2014 ment comprising the Aspergillus niger aspergilloglutamic peptidase that is capable of hydrolyzing plant food allergens, (86). PCT No.: PCT/EP2014/077355 and more particularly, alpha-amylase/trypsin inhibitors, thereby treating diseases due to an innate immune response S 371 (c)(1), in humans, and/or allowing to delay the onset of said (2) Date: Jun. 3, 2016 diseases. The present invention relates to the discovery that (30) Foreign Application Priority Data the Aspergillus niger aspergilloglutamic peptidase is capable of hydrolyzing alpha-amylase/trypsin inhibitors that are Dec. 11, 2013 (EP) .................................. 13196580.8 present in wheat and related cereals said inhibitors being strong inducers of innate immune response. Furthermore, Publication Classification the present invention relates to a method for hydrolyzing alpha-amylase/trypsin inhibitors comprising incubating a (51) Int.
    [Show full text]
  • Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders
    Hindawi Publishing Corporation Autism Research and Treatment Volume 2012, Article ID 868576, 6 pages doi:10.1155/2012/868576 Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders Naghi Momeni,1 Lars Brudin,2 Fatemeh Behnia,3 Berit Nordstrom,¨ 4 Ali Yosefi-Oudarji,5 Bengt Sivberg,4 Mohammad T. Joghataei,5 and Bengt L. Persson1 1 School of Natural Sciences, Linnaeus University, 39182 Kalmar, Sweden 2 Department of Clinical Physiology, Kalmar County Hospital, 39185 Kalmar, Sweden 3 Department of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 4 Department of Health Sciences, Autism Research, Faculty of Medicine, Lund University, Box 157, 22100 Lund, Sweden 5 Cellular and Molecular Research Centre, Tehran University of Medical Sciences (TUMS), Tehran, Iran Correspondence should be addressed to Bengt Sivberg, [email protected] Received 17 June 2011; Revised 22 August 2011; Accepted 22 August 2011 Academic Editor: Judy Van de Water Copyright © 2012 Naghi Momeni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autism spectrum disorders (ASDs) are neurodevelopmental and behavioural syndromes affecting social orientation, behaviour, and communication that can be classified as developmental disorders. ASD is also associated with immune system abnormality. Im- mune system abnormalities may be caused partly by complement system factor I deficiency. Complement factor I is a serine pro- tease present in human plasma that is involved in the degradation of complement protein C3b, which is a major opsonin of the complement system.
    [Show full text]
  • Mouse Prolyl Endopeptidase / PREP Protein (His Tag)
    Mouse Prolyl endopeptidase / PREP Protein (His Tag) Catalog Number: 50288-M07B General Information SDS-PAGE: Gene Name Synonym: AI047692; AI450383; D10Wsu136e; PEP; Pop Protein Construction: A DNA sequence encoding the mature form of mouse PREP (Q9QUR6) (Leu2-Gln710) was expressed, with a polyhistidine tag at the N-terminus. Source: Mouse Expression Host: Baculovirus-Insect Cells QC Testing Purity: > 95 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Prolyl endopeptidase, also known as PREP, belongs to a distinct class of Stability: serine peptidases. It is a large cytosolic enzyme which was first described in the cytosol of rabbit brain as an oligopeptidase. Prolyl endopeptidase ℃ Samples are stable for up to twelve months from date of receipt at -70 degrades the nonapeptide bradykinin at the Pro-Phe bond. It is involved in the maturation and degradation of peptide hormones and neuropeptides His Predicted N terminal: such as alpha-melanocyte-stimulating hormone, luteinizing hormone- Molecular Mass: releasing hormone (LH-RH), thyrotropin-releasing hormone, angiotensin, neurotensin, oxytocin, substance P and vasopressin. Prolyl The recombinant mouse PREP consists of 727 amino acids and predicts a endopeptidase's activity is confined to action on oligopeptides of less than molecular mass of 82.9 KDa. It migrates as an approximately 79-83 KDa 10 kD and it has an absolute requirement for the trans-configuration of the band in SDS-PAGE under reducing conditions. peptide bond preceding proline. It cleaves peptide bonds at the C-terminal side of proline residues. Formulation: References Lyophilized from sterile 20mM Tris, 500mM NaCl, pH 7.4, 10% glycerol, 3mM DTT 1.Oliveira EB, et al.
    [Show full text]
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L
    catalysts Article Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L. acidophilus 5e2 and A. niger Bartosz Brzozowski *, Katarzyna Stasiewicz, Mateusz Ostolski and Marek Adamczak Department of Food Biotechnology, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; [email protected] (K.S.); [email protected] (M.O.); [email protected] (M.A.) * Correspondence: [email protected] Received: 21 July 2020; Accepted: 10 August 2020; Published: 11 August 2020 Abstract: Wheat storage proteins and products of their hydrolysis may cause coeliac sprue in genetically predisposed individuals with high expression of main histocompatibility complex HLA-DQ2 or DQ8, since by consuming wheat, they become exposed to proline- (P) and glutamine (Q)-rich gluten. In bread-making, the hydrolysis of gliadins and coeliac-toxic peptides occurs with varied efficiency depending on the fermentation pH and temperature. Degradation of gliadins catalysed by Lactobacillus acidophilus 5e2 peptidases and a commercial prolyl endopeptidase synthesised by A. niger, carried out at pH 4.0 and 37 ◦C, reduces the gliadin concentration over 110-fold and decreases the relative immunoreactivity of the hydrolysate to 0.9% of its initial value. Hydrolysis of coeliac-toxic peptides: LGQQQPFPPQQPY (P1) and PQPQLPYPQPQLP (P2) under the same conditions occurs with the highest efficiency, reaching 99.8 0.0% and 97.5 0.1%, respectively. ± ± The relative immunoreactivity of peptides P1 and P2 was 0.8 0.0% and 3.2 0.0%, respectively. ± ± A mixture of peptidases from L. acidophilus 5e2 and A. niger may be used in wheat sourdough fermentation to reduce the time needed for degradation of proteins and products of their hydrolysis.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Identification and Characterisation of Mucin Abnormalities in the Ganglionic Bowel in Hirschsprung’S Disease
    IDENTIFICATION AND CHARACTERISATION OF MUCIN ABNORMALITIES IN THE GANGLIONIC BOWEL IN HIRSCHSPRUNG’S DISEASE By Ruth Marian Speare Submitted for MD (Res) 1 Abstract Hirschsprung’s disease (HD) is a congenital abnormality of unknown origin, characterised by a lack of ganglion cells in the distal colon which results in functional colonic obstruction. The major cause of morbidity and mortality in these children results from an inflammatory condition called enterocolitis. Mucins are large glycoproteins produced by intestinal cells which are a vital part of the colonic defensive barrier to infection. Previous work has found that this barrier is deficient in children with HD in the aganglionic colon and in the immediately adjacent ganglionic colon and that this is related to the risk of developing enterocolitis. This study aimed to further investigate the mucin defensive barrier in a greater region of the ganglionic colon in HD, to establish the extent of any mucin deficiencies and whether these were confined to a limited region close to the aganglionic colon. Mucosal biopsies were collected at intervals along the colon at the time of corrective surgery or colostomy closure in the controls. Organ culture with radioactive mucin precursors was performed and the mucin produced was purified and analysed, results quantified by DNA content in the sample. Lectin binding studies were also carried out. Patients were found to produce lower levels of new mucins most distally, but much higher levels five centimetres proximal when compared to controls. The rest of the colon studied also showed changes in mucin production, with a lack of production of gel-forming mucins and sulphated secreted mucins in Hirschsprung’s disease higher up the colon.
    [Show full text]
  • Supplementary Table 1: List of the 316 Genes Regulated During Hyperglycemic Euinsulinemic Clamp in Skeletal Muscle
    Supplementary Table 1: List of the 316 genes regulated during hyperglycemic euinsulinemic clamp in skeletal muscle. UGCluster Name Symbol Fold Change Cytoband Response to stress Hs.517581 Heme oxygenase (decycling) 1 HMOX1 3.80 22q12 Hs.374950 Metallothionein 1X MT1X 2.20 16q13 Hs.460867 Metallothionein 1B (functional) MT1B 1.70 16q13 Hs.148778 Oxidation resistance 1 OXR1 1.60 8q23 Hs.513626 Metallothionein 1F (functional) MT1F 1.47 16q13 Hs.534330 Metallothionein 2A MT2A 1.45 16q13 Hs.438462 Metallothionein 1H MT1H 1.42 16q13 Hs.523836 Glutathione S-transferase pi GSTP1 -1.74 11q13 Hs.459952 Stannin SNN -1.92 16p13 Immune response, cytokines & related Hs.478275 TNF (ligand) superfamily, member 10 (TRAIL) TNFSF10 1.58 3q26 Hs.278573 CD59 antigen p18-20 (protectin) CD59 1.49 11p13 Hs.534847 Complement component 4B, telomeric C4A 1.47 6p21.3 Hs.535668 Immunoglobulin lambda variable 6-57 IGLV6-57 1.40 22q11.2 Hs.529846 Calcium modulating ligand CAMLG -1.40 5q23 Hs.193516 B-cell CLL/lymphoma 10 BCL10 -1.40 1p22 Hs.840 Indoleamine-pyrrole 2,3 dioxygenase INDO -1.40 8p12-p11 Hs.201083 Mal, T-cell differentiation protein 2 MAL2 -1.44 Hs.522805 CD99 antigen-like 2 CD99L2 -1.45 Xq28 Hs.50002 Chemokine (C-C motif) ligand 19 CCL19 -1.45 9p13 Hs.350268 Interferon regulatory factor 2 binding protein 2 IRF2BP2 -1.47 1q42.3 Hs.567249 Contactin 1 CNTN1 -1.47 12q11-q12 Hs.132807 MHC class I mRNA fragment 3.8-1 3.8-1 -1.48 6p21.3 Hs.416925 Carcinoembryonic antigen-related cell adhesion molecule 19 CEACAM19 -1.49 19q13.31 Hs.89546 Selectin E (endothelial
    [Show full text]
  • Prolyl Endopeptidase from Aspergillus Niger Expressing A
    Annex 3 FORM ON WHICH INFORMATION ON THE COMPOUND TO BE EVALUATED BY JECFA IS PROVIDED In completing this form, only brief information is required. The form may be retyped if more space is needed under any one heading provided that the general format is maintained. Name of Compound(s): Acid prolyl endopeptidase from a genetically modified strain of Aspergillus niger Question(s) to be answered by JECFA Safety evaluation when used as processing aid. (kindly provide a brief justification of the request in case of re-evaluations) 1. Proposal for inclusion submitted by: Ministry of Health, Welfare and Sport Nutrition, Health Protection and Prevention Department Parnassusplein 5 2511 VX The Hague P.O. box 20350 2500 EJ The Hague The Netherlands Tel: +31 703407132 2. Name of compound; trade name(s); chemical name(s): Name of compound : Acid prolyl endopeptidase from a genetically modified strain of Aspergillus niger Trade names : BREWERS CLAREX®, MAXIPRO PSP Chemical name : Acid prolyl endopeptidase (EC 3.4.21.xx1) 3. Names and addresses of basic producers: DSM Food Specialties 15 Rue des Comtesses PO Box 239 59472 Seclin Cédex France Tel: 33 320964545 Fax: 33 320964500 4. Has the manufacturer made a commitment to provide data? Yes. 5. Identification of the manufacturer that will be providing data (Please indicate contact person): Dr Jack Reuvers 1 The name proline endopeptidase is also a synonym of prolyl oligopeptidase, EC (IUBMB) number 3.4.21.26. However, in contrast to oligopeptidases, the enzyme also acts on proteins (Edens et al., 2005; Kubota et al., 2005; Takahashi, 2013).
    [Show full text]
  • Mucin Glycoproteins Are Ubiquitous in Mucous Secretions on Cell Surfaces and in Body fluids
    Chapter 9 – O-GalNAc Glycans - Essentials of Glycobiology 2nd edition Intestinal mucosal barrier function in health and disease. Turner, JR Nature Rev. Immunology 9: 799 (2009) From Mucins to Mucus Thornton DJ and Sheehan JK, Proc Am Thorac Soc., 1:54 (2004) Mucin structure, aggregation, physiological functions and biomedical applications Bansil R. and Turner BS Curr Opin in Colloid & Interface Sci, 11:164 (2006) Mucins in the mucosal barrier to infection Linden et al, Nature Immunology 1: 183 (2008) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Paszek et al, Nature 511: 319 (2014) Chapter 9 – O-GalNAc Glycans Essentials of Glycobiology 2nd edition 4/14/2016 O-GalNAc Glycans - Essentials of Glycobiology - NCBI Bookshelf NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009. Chapter 9O-GalNAc Glycans Inka Brockhausen, Harry Schachter, and Pamela Stanley. Correction O-glycosylation is a common covalent modification of serine and threonine residues of mammalian glycoproteins. This chapter describes the structures, biosynthesis, and functions of glycoproteins that are often termed mucins. In mucins, O-glycans are covalently α-linked via an N-acetylgalactosamine (GalNAc) moiety to the -OH of serine or threonine by an O-glycosidic bond, and the structures are named mucin O-glycans or O-GalNAc glycans. The focus of this chapter is on mucins and mucin-like glycoproteins that are heavily O-glycosylated, although glycoproteins that carry only one or a few O- GalNAc glycans are also briefly discussed.
    [Show full text]
  • Two Glycosulfatases from the Liver of a Marine Gastropod , Charonia Lampas
    J. Biochem., 79, 27-34 (1976) Two Glycosulfatases from the Liver of a Marine Gastropod , Charonia lampas Partial Purification and Properties1 Hiroshi HATANAKA, Yoko OGAWA , and Fujio EGAMI Mitsubishi-Kasei Institute of Life Sciences , Minamiooya, Machida-shi, Tokyo 194 Received for publication , July 9, 1975 Two glycosulfatases [EC 3.1 .6.3], I and ‡U, were purified 31 .3- and 33.9-fold respectively, from a crude extract of the liver of Charonia lampas . The purification was carried out by the following chromatographic procedures ; phosphocellulose , S ephadex G-150, Concanavalin A-Sepharose and isoelectric focussing . The enzyme preparations obtained were practically free from arylsulfatase [EC 3.1.6.1] contami nation. Both glycosulfatases are probably glycoproteins differing in their carbohydrate moieties. The molecular weights of glycosulfatase I and H were estimated to be about 112,000 and 79 ,000, respectively. They had the same optimum pH of 5.5, and the same Km value of 25.0mM for glucose 6-sulfate . As a result of recent investigations on sul yet been fully investigated. Glycosulfatase was fatase reactions, the physiological significance found first in molluscs by Soda and co-workers of arylsulfatase [EC 3. 1. 6. 1] is gradually being (10) and later in microorganisms, but its oc- elucidated. The hydrolysis of naturally oc currence in higher animals is doubtful (11). curring sugar-sulfate derivatives by arylsul In the present investigation, we studied fatase has been reported in the cases of sulfo the partial purification and some properties of galactolipids (1-5), UDP - N- acetylgalacto two glycosulfatases from the liver of a marine samine 4-sulfate (6, 7), and ascorbate 2-sulfate gastropod, Charonia lampas.
    [Show full text]
  • Molecular and Biochemical Characterisation of Siap As a Sialic Acid Binding Protein Component of a TRAP Transporter for Sialic Acid
    Molecular and biochemical characterisation of SiaP as a sialic acid binding protein component of a TRAP transporter for sialic acid Adam Paul Hopkins A thesis submitted for the degree of Doctor of Philosophy University of York Department of Biology July 2010 Abstract Sialic acid utilisation plays an important role in the growth and persistence of the obligate human mucosal pathogen Haemophilus influenzae, which causes respiratory tract infections, septicaemia and meningitis. Like many other bacteria, H. influenzae can use host-derived sialic acids as carbon, nitrogen and energy sources, but also as a terminal modification on the LPS to better evade the human immune system. H. influenzae takes up exogenous sialic acid via a tripartite ATP-independent periplasmic (TRAP) transporter, SiaPQM. This possesses an extracytoplasmic substrate binding protein (SBP), SiaP, which binds the substrate in the periplasm and delivers it to the specific membrane permease, SiaQM. SiaP contains two globular domains, which close around the substrate upon binding. Here, the mechanism of sialic acid binding by SiaP is investigated using site-directed mutagenesis of residues in the ligand binding site and analogues of sialic acid. These, and several mutations on the surface of SiaP, were investigated for their effect on transport by SiaPQM in vitro, using SiaQM reconstituted into proteoliposomes, and in vivo, using expression of siaPQM in an E. coli strain lacking its native sialic acid transporter, NanT. It is demonstrated that stabilisation of the carboxylate group of sialic acid by the totally conserved Arginine-147 is important for high-affinity ligand binding, but is not essential for transport. Mutation of Aparagine-150 to Aspartate abolishes the function of the transporter without affecting ligand binding, suggesting the existence of a critical interaction between the components of the transporter.
    [Show full text]