Some Suggestions for the Term Paper for Physics 618: Applied Group Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Holographic S–Matrix
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server On the Holographic S{matrix I.Ya.Aref’eva Steklov Mathematical Institute, Russian Academy of Sciences Gubkin St.8, GSP-1, 117966, Moscow, Russia Centro Vito Volterra, Universita di Roma Tor Vergata, Italy [email protected] Abstract The recent proposal by Polchinski and Susskind for the holographic flat space S– matrix is discussed. By using Feynman diagrams we argue that in principle all the information about the S–matrix in the interacting field theory in the bulk of the anti- de Sitter space is encoded into the data on the timelike boundary. The problem of locality of interpolating field is discussed and it is suggested that the interpolating field lives in a quantum Boltzmannian Hilbert space. 1 According to the holographic principle [1, 2] one should describe a field theory on a manifold M which includes gravity by a theory which lives on the boundary of M.Two prominent examples of the holography are the Matrix theory [3] and the AdS/CFT corre- spondence [4, 5, 6]. The relation between quantum gravity in the anti-de Sitter space and the gauge theory on the boundary could be useful for better understanding of both theories. In principle CFT might teach us about quantum gravity in the bulk of AdS. Correlation functions in the Euclidean formulation are the subject of intensive study (see for example [7]-[21]). The AdS/CFT correspondence in the Lorentz formulation is considered in [22]-[29]. -
Supergravity and Its Legacy Prelude and the Play
Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity. -
GSS: Gauge and String Theories
GSS: Gauge and String Theories S. Bellucci (Resp.), S. Ferrara (Ass.), S. Krivonos (Osp.), A. Sutulin (Bors. PD), B.N. Tiwari (Ospite), A. Yeranyan (Bors. Fermi Institute) Research Activity S. Ferrara investigated different aspects of black-hole physics, which include a classification of charge- orbits for extremal single-center black holes and first-order flows of extremal black holes with different BPS properties. He also investigated some aspects of multi-center black holes and, in particular, the classification of two-center orbits and first order flows for multi-center composites. He studied several aspects of supersymmetry breaking. Applications to Particle Physics or to inflation rest on N=1 spontaneously broken supergravity where some multiplets mediate supersymmetry breaking while others accommodate the inflaton. The supersymmetric extension of the Starobinsky model depends on the off-shell formulation of the local supersymmetry algebra. This allows one to show the equivalence of this higher curvature theory to a standard Einstein supergravity. Depending on the chosen formulation the model corresponds to supergravity coupled either to two massive chiral multiplets, one of which is the goldstino multiplet, or to a massive vector multiplet. He also introduced a set of minimal models, where the inflaton sector is described by a single scalar field (with D term and Fayet-Iliopoulos term generating potential), unlike in models based on chiral multiplets based on an F-term potential. In minimal models the scalaron is dual to the inflaton, and being the member of a massive vector multiplet, it is the superpartner of the Stueckelberg field. Subsequently, replacing the Goldstino multiplet with its non-linear realization via a nilpotent superfield, he arrived at a new universal Volkov-Akulov-Starobinsky Supergravity. -
Global Program
PROGRAM Monday morning, July 13th La Sapienza Roma - Aula Magna 09:00 - 10:00 Inaugural Session Chairperson: Paolo de Bernardis Welcoming addresses Remo Ruffini (ICRANet), Yvonne Choquet-Bruhat (French Académie des Sciences), Jose’ Funes (Vatican City), Ricardo Neiva Tavares (Ambassador of Brazil), Sargis Ghazaryan (Ambassador of Armenia), Francis Everitt (Stanford University) and Chris Fryer (University of Arizona) Marcel Grossmann Awards Yakov Sinai, Martin Rees, Sachiko Tsuruta, Ken’Ichi Nomoto, ESA (acceptance speech by Johann-Dietrich Woerner, ESA Director General) Lectiones Magistrales Yakov Sinai (Princeton University) 10:00 - 10:35 Deterministic chaos Martin Rees (University of Cambridge) 10:35 - 11:10 How our understanding of cosmology and black holes has been revolutionised since the 1960s 11:10 - 11:35 Group Picture - Coffee Break Gerard 't Hooft (University of Utrecht) 11:35 - 12:10 Local Conformal Symmetry in Black Holes, Standard Model, and Quantum Gravity Plenary Session: Mathematics and GR Katarzyna Rejzner (University of York) 12:10 - 12:40 Effective quantum gravity observables and locally covariant QFT Zvi Bern (UCLA Physics & Astronomy) 12:40 - 13:10 Ultraviolet surprises in quantum gravity 14:30 - 18:00 Parallel Session 18:45 - 20:00 Stephen Hawking (teleconference) (University of Cambridge) Public Lecture Fire in the Equations Monday afternoon, July 13th Code Classroom Title Chairperson AC2 ChN1 MHD processes near compact objects Sergej Moiseenko FF Extended Theories of Gravity and Quantum Salvatore Capozziello, Gabriele AT1 A Cabibbo Cosmology Gionti AT3 A FF3 Wormholes, Energy Conditions and Time Machines Francisco Lobo Localized selfgravitating field systems in the AT4 FF6 Dmitry Galtsov, Michael Volkov Einstein and alternatives theories of gravity BH1:Binary Black Holes as Sources of Pablo Laguna, Anatoly M. -
Ads₄/CFT₃ and Quantum Gravity
AdS/CFT and quantum gravity Ioannis Lavdas To cite this version: Ioannis Lavdas. AdS/CFT and quantum gravity. Mathematical Physics [math-ph]. Université Paris sciences et lettres, 2019. English. NNT : 2019PSLEE041. tel-02966558 HAL Id: tel-02966558 https://tel.archives-ouvertes.fr/tel-02966558 Submitted on 14 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Prepar´ ee´ a` l’Ecole´ Normale Superieure´ AdS4/CF T3 and Quantum Gravity Soutenue par Composition du jury : Ioannis Lavdas Costas BACHAS Le 03 octobre 2019 Ecole´ Normale Superieure Directeur de These Guillaume BOSSARD Ecole´ Polytechnique Membre du Jury o Ecole´ doctorale n 564 Elias KIRITSIS Universite´ Paris-Diderot et Universite´ de Rapporteur Physique en ˆIle-de-France Crete´ Michela PETRINI Sorbonne Universite´ President´ du Jury Nicholas WARNER University of Southern California Membre du Jury Specialit´ e´ Alberto ZAFFARONI Physique Theorique´ Universita´ Milano-Bicocca Rapporteur Contents Introduction 1 I 3d N = 4 Superconformal Theories and type IIB Supergravity Duals6 1 3d N = 4 Superconformal Theories7 1.1 N = 4 supersymmetric gauge theories in three dimensions..............7 1.2 Linear quivers and their Brane Realizations...................... 10 1.3 Moduli Space and Symmetries............................ -
Singlet Glueballs in Klebanov-Strassler Theory
Singlet Glueballs In Klebanov-Strassler Theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY IVAN GORDELI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy ARKADY VAINSHTEIN April, 2016 c IVAN GORDELI 2016 ALL RIGHTS RESERVED Acknowledgements First of all I would like to thank my scientific adviser - Arkady Vainshtein for his incredible patience and support throughout the course of my Ph.D. program. I would also like to thank my committee members for taking time to read and review my thesis, namely Ronald Poling, Mikhail Shifman and Alexander Voronov. I am deeply grateful to Vasily Pestun for his support and motivation. Same applies to my collaborators Dmitry Melnikov and Anatoly Dymarsky who have suggested this research topic to me. I am thankful to my other collaborator - Peter Koroteev. I would like to thank Emil Akhmedov, A.Yu. Morozov, Andrey Mironov, M.A. Olshanetsky, Antti Niemi, K.A. Ter-Martirosyan, M.B. Voloshin, Andrey Levin, Andrei Losev, Alexander Gorsky, S.M. Kozel, S.S. Gershtein, M. Vysotsky, Alexander Grosberg, Tony Gherghetta, R.B. Nevzorov, D.I. Kazakov, M.V. Danilov, A. Chervov and all other great teachers who have shaped everything I know about Theoretical Physics. I am deeply grateful to all my friends and colleagues who have contributed to discus- sions and supported me throughout those years including A. Arbuzov, L. Kushnir, K. Kozlova, A. Shestov, V. Averina, A. Talkachova, A. Talkachou, A. Abyzov, V. Poberezh- niy, A. Alexandrov, G. Nozadze, S. Solovyov, A. Zotov, Y. Chernyakov, N. -
Black Holes and Qubits
Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-duff.pdf Black Holes and Qubits MICHAEL J. D UFF Blackett Labo ratory, Imperial C ollege London Abstract Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two. Introduction Whenever two very different areas of theoretical physics are found to share the same mathematics, it frequently leads to new insights on both sides. Here we describe how knowledge of string theory and M-theory leads to new discoveries about Quantum Information Theory (QIT) and vice-versa (Duff 2007; Kallosh and Linde 2006; Levay 2006). Bekenstein-Hawking entropy Every object, such as a star, has a critical size determined by its mass, which is called the Schwarzschild radius. A black hole is any object smaller than this. Once something falls inside the Schwarzschild radius, it can never escape. This boundary in spacetime is called the event horizon. So the classical picture of a black hole is that of a compact object whose gravitational field is so strong that nothing, not even light, can escape. Yet in 1974 Stephen Hawking showed that quantum black holes are not entirely black but may radiate energy, due to quantum mechanical effects in curved spacetime. In that case, they must possess the thermodynamic quantity called entropy. -
Inflation from Nilpotent Kähler Corrections
Home Search Collections Journals About Contact us My IOPscience Inflation from nilpotent Kähler corrections This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP11(2016)028 (http://iopscience.iop.org/1475-7516/2016/11/028) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 131.169.210.43 This content was downloaded on 16/11/2016 at 12:20 Please note that terms and conditions apply. You may also be interested in: General sGoldstino inflation Sergio Ferrara and Diederik Roest Robust Inflation from fibrous strings C.P. Burgess, M. Cicoli, S. de Alwis et al. Inflation and dark energy with a single superfield Andrei Linde, Diederik Roest and Marco Scalisi On inflation, cosmological constant, and SUSY breaking Andrei Linde Cosmological attractors and asymptotic freedom of the inflaton field Renata Kallosh and Andrei Linde Perturbative stability along the supersymmetric directions of the landscape Kepa Sousa and Pablo Ortiz Inflation and uplifting with nilpotent superfields Renata Kallosh and Andrei Linde ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Inflation from nilpotent K¨ahler corrections JCAP11(2016)028 Evan McDonougha and Marco Scalisib aErnest Rutherford Physics Building, McGill University, 3600 University Street, Montr´eal QC, H3A 2T8 Canada bDeutsches Elektronen-Synchrotron, DESY, Notkestraße 85, 22607 Hamburg, Germany E-mail: [email protected], [email protected] Received September 17, 2016 Accepted November 4, 2016 Published November 11, 2016 Abstract. We develop a new class of supergravity cosmological models where inflation is induced by terms in the K¨ahler potential which mix a nilpotent superfield S with a chiral sector Φ. -
A Note on Six-Dimensional Gauge Theories
ILL-(TH)-97-09 hep-th/9712168 A Note on Six-Dimensional Gauge Theories Robert G. Leigh∗† and Moshe Rozali‡ Department of Physics University of Illinois at Urbana-Champaign Urbana, IL 61801 July 9, 2018 Abstract We study the new “gauge” theories in 5+1 dimensions, and their non- commutative generalizations. We argue that the θ-term and the non-commutative torus parameters appear on an equal footing in the non-critical string theories which define the gauge theories. The use of these theories as a Matrix descrip- tion of M-theory on T 5, as well as a closely related realization as 5-branes in type IIB string theory, proves useful in studying some of their properties. arXiv:hep-th/9712168v2 14 Apr 1998 ∗U.S. Department of Energy Outstanding Junior Investigator †e-mail: [email protected] ‡e-mail: [email protected] 0 1 Introduction Matrix theory[1] is an attempt at a non-perturbative formulation of M-theory in the lightcone frame. Compactifying it on a torus T d has been shown to be related to the large N limit of Super-Yang-Mills (SYM) theory in d + 1 dimensions[2]. This description is necessarily only partial for d > 3, since the SYM theory is then not renormalizable. The SYM theory is defined, for d = 4 by the (2,0) superconformal field theory in 5+1 dimensions [3, 4], and for d = 5 by a non-critical string theory in 5+1 dimensions [4, 5]. The situation of compactifications to lower dimensions is unclear for now (for recent reviews see [7, 8]). -
Random Matrix Theory in Physics
RANDOM MATRIX THEORY IN PHYSICS π π Thomas Guhr, Lunds Universitet, Lund, Sweden p(W)(s) = s exp s2 : (2) 2 − 4 As shown in Figure 2, the Wigner surmise excludes de- Introduction generacies, p(W)(0) = 0, the levels repel each other. This is only possible if they are correlated. Thus, the Poisson We wish to study energy correlations of quantum spec- law and the Wigner surmise reflect the absence or the tra. Suppose the spectrum of a quantum system has presence of energy correlations, respectively. been measured or calculated. All levels in the total spec- trum having the same quantum numbers form one par- ticular subspectrum. Its energy levels are at positions 1.0 xn; n = 1; 2; : : : ; N, say. We assume that N, the num- ber of levels in this subspectrum, is large. With a proper ) s smoothing procedure, we obtain the level density R1(x), ( 0.5 i.e. the probability density of finding a level at the energy p x. As indicated in the top part of Figure 1, the level density R1(x) increases with x for most physics systems. 0.0 In the present context, however, we are not so interested 0 1 2 3 in the level density. We want to measure the spectral cor- s relations independently of it. Hence, we have to remove FIG. 2. Wigner surmise (solid) and Poisson law (dashed). the level density from the subspectrum. This is referred to as unfolding. We introduce a new dimensionless en- Now, the question arises: If these correlation patterns ergy scale ξ such that dξ = R (x)dx. -
Download (77Kb)
PHYSICAL REVIEW D 67, 046006 ͑2003͒ 3-form induced potentials, dilaton stabilization, and running moduli Andrew R. Frey* Department of Physics, University of California, Santa Barbara, California 93106 Anupam Mazumdar† CHEP, McGill University, 3600 University Road, Montre´al, Quebec, Canada H3A 2T8 ͑Received 8 November 2002; published 27 February 2003͒ We study the potential induced by imaginary self-dual 3-forms in compactifications of string theory and the cosmological evolution associated with it. The potential contains exponentials of the volume moduli of the compactification, and we demonstrate that the exponential form of the potential leads to a power law for the scale factor of the universe. This power law does not support accelerated expansion. We explain this result in terms of supersymmetry and comment on corrections to the potential that could lead to inflation or quintes- sence. DOI: 10.1103/PhysRevD.67.046006 PACS number͑s͒: 11.25.Mj, 04.65.ϩe, 98.80.Cq I. INTRODUCTION so these models have the phenomenology of the Randall- Sundrum models ͓17–19͔. The warp factor depends on the If we believe that string theory ͑or M theory͒ is the fun- position of D3-branes ͑and orientifold planes͒ on the com- damental description of interactions in our Universe, then we pact space and also determines the 5-form field strength. The are obviously forced to place the basic processes of cosmol- condition ͑1͒ gives rise to a potential for many of the light ogy into a string theoretic framework. Important steps have scalars, including the dilaton generically, which vanishes at been made in this direction by examining four dimensional the classical minimum and furthermore has no preferred supergravity models for potentials that could support the compactification volume. -
JT Gravity and Random Matrix Ensembles
JT Gravity And Random Matrix Ensembles Edward Witten Strings 2019, Brussels I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * time-reversal symmetry * fermions * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). * time-reversal symmetry * fermions * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * fermions * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * time-reversal symmetry * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * time-reversal symmetry * fermions This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ).