Relationship Between Psychosocial Stress and Allostatic Load

Total Page:16

File Type:pdf, Size:1020Kb

Relationship Between Psychosocial Stress and Allostatic Load UNIVERSITY OF CALIFORNIA Los Angeles Relationship between Psychosocial Stress and Allostatic Load: Findings from the MIDUS study A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Epidemiology by Stephanie Rummans Reading 2015 © Copyright by Stephanie Rummans Reading 2015 ABSTRACT OF THE DISSERTATION Relationship between Psychosocial Stress and Allostatic Load: Findings from the MIDUS study by Stephanie Rummans Reading Doctor of Philosophy in Epidemiology University of California, Los Angeles, 2015 Professor Teresa E. Seeman, Chair Scientific evidence continues to accumulate that relates the experience of stress with overall poor health. However, defining what is meant by the term ‘stress’, in-order to examine its association with the experience adverse health, has been a difficult task for medical researchers. In the present investigation, using linear mixed effect regression analyses, we were interested in evaluating how the experience of psychosocial stress was related to one conceptualization of ‘stress’ as it impacts the human body, allostatic load. Allostatic load, proposed as ‘the cost of chronic exposure to fluctuating or heightened neural or neuroendocrine response resulting from repeated or chronic environmental challenge that an individual reacts to as being particularly stressful’ has been identified in the medical literature as mechanism that is associated with numerous negative health events, especially with regards to overall worse cardiovascular and immune system health. Our aim was to identify the extent to which a cumulative measure of ii psychosocial stress was related to allostatic load, as well as, identify the relative contributions of eleven specific dimensions of stress to that relationship. We also evaluated whether and how these relationships were moderated by sociodemographic, health behavior and psychosocial resource characteristics, to better understand how psychosocial stress was related to allostatic load across various sub-populations. Data for the analyses were obtained from the Midlife Development in the United States (MIDUS) study, a national, longitudinal investigation with a purpose to investigate the role of the behavioral, psychological and social factors that account for the age related variations in health and well-being across a national sample of Americans. As presented within the written dissertation, further information is provided for readers as an overall introduction to the dissertation (Chapter 1), additional details regarding our proposed aims (Chapter 2), the background and significance for our line of inquiry (Chapter 3), the analytical methods that were implemented for the purpose of this investigation (Chapter 4), the results and findings from our analyses (Chapter 5), a discussion of the results and findings (Chapter 6) and then a highlight of the main study limitations (Chapter 7) along with our overall study conclusions (Chapter 8). iii This dissertation of Stephanie Rummans Reading is approved. Arun S. Karlamangla Beate R. Ritz Dallas T. Swendeman Teresa E. Seeman, Committee Chair University of California, Los Angeles 2015 iv Table of Contents CHAPTER I. Introduction …………………………...……………………...………………………...... p. 1 CHAPTER II. Specific Aims …………………...……………………….……………………………… p. 4 AIM 1 …………………………………………………….……….…………………….….….. p. 5 Hypothesis 1 ……………………………………….………………….…......……….. p. 5 Hypothesis 2 …………………………………………….………………….………… p. 5 AIM 2 …………………………………………………….……….………………….…........... p. 5 Hypothesis 3 …………………………………………….………………….…............ p. 5 AIM 3: PART 1 ……………………………………………….….………………….….…....... p. 6 Hypothesis 4 …………………………………………….………………….…............ p. 6 AIM 3: PART 2 ……………………………………………….….………………….….…....... p. 7 Hypothesis 5 …………………………………………….………………….…............ p. 7 AIM 4: PART 1 ……………………………………………….….………………….….…....... p. 7 Hypothesis 6 …………………………………………….………………….…............ p. 8 AIM 4: PART 2 ……………………………………………….….………………….….…....... p. 8 Hypothesis 7 …………………………………………….………………….…............ p. 8 CHAPTER III. Background and Significance …………….....………….……………………….…....... p. 9 3.1 Stress ……………………………………………………………………………................. p. 9 3.2 Allostasis and Allostatic Load ……………………………………………………….......... p. 11 3.3 Psychosocial Stress ……………………………………………………………………....... p. 17 CHAPTER IV. Methods …………….....……………….....………….……………………….…........... p. 20 4.1 Overview of the Midlife Development in the United States (MIDUS) Study ……….......... p. 20 4.2 Study Participants and Sampling …………………….………………………………......... p. 22 MIDUS I Main Study …………………....…………………………………...…......... p. 22 MIDUS II Resurvey Study ………..……………………………………….…............. p. 24 MIDUS II Biomarker Study ………………………..………………………….. ......... p. 27 4.3 Data Collection …………………………………………………………..……..…….......... p. 28 MIDUS II Resurvey Study …………………………………..…………….……......... p. 28 MIDUS II Biomarker Study ………………………..…………………….….….......... p. 31 4.4 Dependent Variable: Allostatic Load …………………………………………..…….......... p. 32 4.5 Independent Variables: Psychosocial Stress Domains ……………………………….......... p. 37 Psychological Work Stress ………………………………………..........…………...... p. 37 Physical Work Stress ……………………………………...........................………...... p. 39 Work-Family Spillover Stress ……………………………………………………....... p. 41 Perceived Inequality ……………………………………………...........…………....... p. 42 v Relationship Stress ……………………………………………...……………..…........ p. 44 Neighborhood Stress ………………………………………….....………………......... p. 46 Discrimination ………………………………………………........................……....... p. 47 Current Financial Stress …………………………………………………………...... p. 50 Past Year Problems in the Immediate Family ……………………..……………......... p. 51 Stressful Life Experiences …………………………………………..……………....... p. 52 Early Life Stress ……………………………………………………..……..……........ p. 54 Missing Data Imputation …………………………………………...……………........ p. 56 Summary Index Measure of Overall Stress ………………………………………....... p. 56 Imputation Flags …………………………………………………….......……..…....... p. 57 4.6 Analysis Covariates: Sociodemographic Characteristics …………………………….......... p. 57 Age and Gender …………………………………………………............………......... p. 58 Race/Ethnicity ………………………………………………..........…………..…....... p. 58 Income ……………………………………………………….....…..……..…….......... p. 60 Educational Attainment …………………………………………………………......... p. 61 Marital Status …………………………………………………………..……..…........ p. 62 4.7 Analysis Covariates: Health Behavior Characteristics ………………………………......... p. 64 Physical Activity …………………………………………………………..……......... p. 64 Smoking Status …………………………………………………………..……............ p. 66 Alcohol Use …………………………………………………………..……..…........... p. 67 4.8 Analysis Covariates: Psychosocial Resource Characteristics ………………………........... p. 67 Psychological Well-Being Scales ……………………………………………….......... p. 68 Coping Scales …………………………………………………………..……..…........ p. 71 Personality Trait Scales …………………………………………………………......... p. 73 4.9 Statistical Methods …………………………………………………………..……..…........ p. 75 Pre-Regression Analyses …………………………………………………………....... p. 75 Aims 1 and 2 …………………………………………………………..……..…......... p. 76 Aim 3 …………………………………………………………..……...............…........ p. 77 Aim 4 …………………………………………………………..……...............…........ p. 78 CHAPTER V. Results …………………………………………………………..……..…….................. p. 79 5.1 Descriptives …………………………………………………………..……..…….............. p. 79 5.2 Aims 1 and 2 ...............................……………...………….....………...................…........... p. 80 Analysis of Main Effects: Summary Index Measure of Overall Stress ….................... p. 80 Analysis of Main Effects: Component Psychosocial Stress Domains .…..................... p. 81 5.3 Aim 3 ...................………………............……………………………………..................... p. 82 Individual Moderation Models: Summary Index Measure of Overall Stress ............... p. 82 vi Simultaneous Moderation Models: Summary Index Measure of Overall Stress .......... p. 83 Select Moderation Models: Component Psychosocial Stress Domains ........................ p. 84 5.4 Aim 4 ....…………………….........……………...........................….…................................ p. 88 Individual Psychosocial Resource Moderation Models ................................................ p. 88 Simultaneous Psychosocial Resource Moderation Models ........................................... p. 88 Age Differences in Psychosocial Resource Moderation Models (Stratified Analyses) ....... p. 89 Gender Differences in Psychosocial Resource Moderation Models (Stratified Analyses) .. p. 89 Educational Differences in Psychosocial Resource Moderation Models (Stratified Analyses) p. 90 CHAPTER VI. Discussion ....................................................................................................................... p. 92 6.1 Aims 1 and 2 ...........................…………………………….....………..................…........... p. 92 6.2 Aim 3 ......................................………………………….....………...................…............... p. 94 Age .....................................………………………….....……….................…............. p. 94 Race/Ethnicity ......................................………………………….....………................ p. 97 Marital Status ......................................………………………….....……….................. p. 100 6.3 Aim 4 .....................................…………………………….....………...................…............ p. 102 Age Stratified Analyses ......................................………………………….....….......... p. 103 Gender Stratified
Recommended publications
  • Allostatic Load
    Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Search Wikipedia Allostatic load From Wikipedia, the free encyclopedia Main page This article has multiple issues. Please help improve it or discuss these issues on [hide] Contents the talk page. (Learn how and when to remove these template messages) Featured content This article needs attention from an expert in psychology. (May 2016) Current events This article needs to be updated. (May 2016) Random article Allostatic load is "the wear and tear on the body" which accumulates as an Donate to Wikipedia individual is exposed to repeated or chronic stress. The term was coined by Wikipedia store McEwen and Stellar in 1993. It represents the physiological consequences of chronic exposure to fluctuating or heightened neural or neuroendocrine Interaction response which results from repeated or prolonged chronic stress. Help About Wikipedia Contents [hide] Community portal 1 Regulatory model Recent changes 2 Types Contact page 3 Measurement 4 Relationship to allostasis and homeostasis Tools 5 Reducing risk What links here 6 See also Related changes 7 References The graph represents the effect of increased stress Upload file on the performance of the body. The lower the stress Special pages Regulatory model [ edit ] levels are in the body, the less likely the allostatic load Permanent link model will have a significant effect on the brain and The term allostatic load is "the wear and tear on the body" which accumulates Page information health. Although, an increase in stress levels results in as an individual is exposed to repeated or chronic stress.[1] It was coined by Wikidata item an increase in stress on the brain and the health of McEwen and Stellar in 1993.[2] individuals, making it more likely for the body to have Cite this page The term is part of the regulatory model of allostasis, where the predictive significant effects on homeostasis and cause In other projects regulation or stabilisation of internal sensations in response to stimuli is breakdown of the body systems.
    [Show full text]
  • Keynote Address Stress, Sex and the Hippocampus
    You are here: Home > research > 12th Research Day > Keynote Speaker ABSTRACT: KEYNOTE ADDRESS STRESS, SEX AND THE HIPPOCAMPUS: FROM SERENDIPITY TO CLINICAL RELEVANCE Bruce S. McEwen, PhD Lab Neuroendocrinology, Rockefeller University, New York, NY The hippocampal formation, which expresses high levels of adrenal steroid receptors, is a plastic brain structure that is important for certain types of learning and memory. It is also vulnerable to insults such as stroke, seizures and head trauma. The hippocampus is also sensitive and vulnerable to the effects of stress and stress hormones and it is responsive to the actions of sex hormones as well, both during development and adult life. Stress and sex hormones regulate 3 types of structural plasticity in the adult hippocampus: synaptogenesis, reorganization of dendrites, and neurogenesis in the dendrite gyrus. Developmentally-programmed sex differences are also seen in the hippocampus. Suppression of dentate gyrus neurogenesis and atrophy of dendrites of hippocampal pyramidal neurons are produced by chronic psychosocial stress, involving the actions of adrenal steroids acting in concert with excitatory amino acid neurotransmitters. As far as we can tell, these changes are reversible as long as stress is terminated after a number of weeks. However, there are also reports that much longer durations of psychosocial stress leads to permanent loss of hippocampal pyramidal neurons. In the human hippocampus, MRI studies along with neuropsychological testing have revealed memory impairment and atrophy of the whole human hippocampus in some individuals as they age. This is reminiscent of individual differences in aging in rodents, which appear to reflect life-long patterns of stress hormone reactivity that are developmentally programmed, although a developmental influence upon human individual differences is only a matter of speculation.
    [Show full text]
  • Allostasis, Interoception, and the Free Energy Principle
    1 Allostasis, interoception, and the free energy principle: 2 Feeling our way forward 3 Andrew W. Corcoran & Jakob Hohwy 4 Cognition & Philosophy Laboratory 5 Monash University 6 Melbourne, Australia 7 8 This material has been accepted for publication in the forthcoming volume entitled The 9 interoceptive mind: From homeostasis to awareness, edited by Manos Tsakiris and Helena De 10 Preester. It has been reprinted by permission of Oxford University Press: 11 https://global.oup.com/academic/product/the-interoceptive-mind-9780198811930?q= 12 interoception&lang=en&cc=gb. For permission to reuse this material, please visit 13 http://www.oup.co.uk/academic/rights/permissions. 14 Abstract 15 Interoceptive processing is commonly understood in terms of the monitoring and representation of the body’s 16 current physiological (i.e. homeostatic) status, with aversive sensory experiences encoding some impending 17 threat to tissue viability. However, claims that homeostasis fails to fully account for the sophisticated regulatory 18 dynamics observed in complex organisms have led some theorists to incorporate predictive (i.e. allostatic) 19 regulatory mechanisms within broader accounts of interoceptive processing. Critically, these frameworks invoke 20 diverse – and potentially mutually inconsistent – interpretations of the role allostasis plays in the scheme of 21 biological regulation. This chapter argues in favour of a moderate, reconciliatory position in which homeostasis 22 and allostasis are conceived as equally vital (but functionally distinct) modes of physiological control. It 23 explores the implications of this interpretation for free energy-based accounts of interoceptive inference, 24 advocating a similarly complementary (and hierarchical) view of homeostatic and allostatic processing.
    [Show full text]
  • Neuropsychology of Childhood Epilepsy Advances in Behavioral Biology
    NEUROPSYCHOLOGY OF CHILDHOOD EPILEPSY ADVANCES IN BEHAVIORAL BIOLOGY Editorial Board Jan Bures Institute of Physiology, Prague, Czech Republic Irwin Kopin National Institute of Mental Health, Bethesda, Maryland Bruce McEwen Rockefeller University, New York, New York Karl Pribram Radford University, Radford, Virginia Jay Rosenblatt Rutgers University, Newark, New Jersey Lawrence Weiskranz University of Oxford, Oxford, England Recent Volumes in This Series Volume 37 KINDLING 4 Edited by Juhn A. Wada Volume 38A BASIC, CLINICAL, AND THERAPEUTIC ASPECTS OF ALZHEIMER’S AND PARKINSON’S DISEASES, Volume 1 Edited by Toshiharu Nagatsu, Abraham Fisher, and Mitsuo Yoshida Volume 38B BASIC, CLINICAL, AND THERAPEUTIC ASPECTS OF ALZHEIMER’S AND PARKINSON’S DISEASES, Volume 2 Edited by Toshiharu Nagatsu, Abraham Fisher, and Mitsuo Yoshida Volume 39 THE BASAL GANGLIA III Edited by Giorgio Bernardi, Malcolm B. Carpenter, Gaetano Di Chiara, Micaela Morelli, and Paolo Stanzione Volume 40 TREATMENT OF DEMENTIAS: A New Generation of Progress Edited by Edwin M. Meyer, James W. Simpkins, Jyunji Yamamoto, and Fulton T. Crews Volume 41 THE BASAL GANGLIA IV: New Ideas and Data on Structure and Function Edited by Gérard Percheron, John S. McKenzie, and Jean Féger Volume 42 CALLOSAL AGENESIS: A Natural Split Brain? Edited by Maryse Lassonde and Malcolm A. Jeeves Volume 43 NEUROTRANSMITTERS IN THE HUMAN BRAIN Edited by David J. Tracey, George Paxinos, and Jonathan Stone Volume 44 ALZHEIMER’S AND PARKINSON’S DISEASES: Recent Developments Edited by Israel Hanin, Mitsuo Yoshia, and Abraham Fisher Volume 45 EPILEPSY AND THE CORPUS CALLOSUM 2 Edited by Alexander G. Reeves and David W. Roberts Volume 46 BIOLOGY AND PHYSIOLOGY OF THE BLOOD–BRAIN BARRIER: Transport, Cellular Interactions, and Brain Pathologies Edited by Pierre-Olivier Couraud and Daniel Scherman Volume 47 THE BASAL GANGLIA IV Edited by Chihoto Ohye, Minoru Kimura, and John S.
    [Show full text]
  • Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment
    9/30/2019 Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment Front Endocrinol (Lausanne). 2017; 8: 364. PMCID: PMC5763098 Published online 2017 Dec 22. doi: 10.3389/fendo.2017.00364 PMID: 29375474 Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment Rudolf Hoermann,1,* John E. M. Midgley,2 Rolf Larisch,1 and Johannes W. Dietrich3,4,5 1Department for Nuclear Medicine, Klinikum Lüdenscheid, Lüdenscheid, Germany 2North Lakes Clinical, Ilkley, United Kingdom 3Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany 4Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum, Bochum, Germany 5Ruhr Center for Rare Diseases (CeSER), Witten/Herdecke University, Bochum, Germany Edited by: Noriyuki Koibuchi, Gunma University, Japan Reviewed by: Xuguang Zhu, National Cancer Institute (NIH), United States; Pieter de Lange, Università degli Studi della Campania “Luigi Vanvitelli” Caserta, Italy *Correspondence: Rudolf Hoermann, [email protected] Specialty section: This article was submitted to Thyroid Endocrinology, a section of the journal Frontiers in Endocrinology Homeostasis and allostasis of thyroid function: https://www.frontiersin.org/research-topics/4262/homeostasis- and-allostasis-of-thyroid-function Received 2017 Oct 30; Accepted 2017 Dec 12. Copyright © 2017 Hoermann, Midgley, Larisch and Dietrich. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice.
    [Show full text]
  • Ask the Experts Forum #5: Your Position in Society
    ASK THE EXPERTS FORUM #5: YOUR POSITION IN SOCIETY Nancy Adler, Bruce McEwen, and Peter Schnall address chronic stress, the wealth-health gradient, unemployment, and why women live longer than men. QUESTION #1: If wealth determines health, then why do women – who are routinely paid less than men – live longer? NANCY ADLER: First, we should note that women live longer than men but have higher rates of a number of chronic diseases. So if you actually look at what’s called “quality-adjusted life expectancy,” the gap isn’t as great. But why do women live longer than men? I think the short answer is there appear to be some biological advantages that women have, particularly estrogen, which protects women against cardiovascular disease, the biggest single cause of death in the United States. So pre-menopausally, women are protected and it shifts the mortality from heart disease a number of years. We also see a female biological advantage even at birth. Female fetuses survive at greater rates than do male fetuses, particularly if the pregnant woman is stressed, suggesting that female fetuses may have a little bit of a biological advantage. But it’s also important to think about some related issues. Wealth isn’t the only social determinant of health. If you stuff your pockets with money, it doesn’t make you healthier. It’s what money gets you, along with other social resources, that matters. And women have other resources. Education is an important determinant of health, and women are graduating from high school and from colleges at somewhat greater rates than men.
    [Show full text]
  • Basic Animal Neuropsychology Session II
    Third Annual Neuropsychology Research Day September 16, 2005 9:00-9:10 AM Welcome Joshua Brumberg, Ph.D., Organizer and Founder Neuropsychology Research Day Session I: Basic Animal Neuropsychology Moderator: 9:10-9:25 Morphological Characterization of Layer VI: Effect of Sensory Deprivation Eric Chen (Brumberg Lab) 9:25-9:40 VEGF and Seizures Jamee Nicoletti (Croll Lab) 9:40-9:55 Blockade of VTA Muscarinic Acetylcholine Receptors Disrupts Acquisition of a Food Rewarded Lever Pressing Task Ruth Sharf (Ranaldi Lab) 9:55-10:10 Inbred Mouse Strain Survey of Sucrose Intake Sarah Lewis (Bodnar Lab) 10:10-10:25 Opiods and Addiction Gad Klein (Kest Lab) 10:25-10:45 Questions 10:45-11:00 Coffee Break (put up posters) Session II: Basic Human Neuropsychology Moderator: 11:05-11:20 The Neural Correlates of Nodal Function During Equivalence Class Formation Lanny Fields, Ph.D. 11:20-11:35 Emotional Modulation of Attention: An Event Related Potential Study Tracy Dennis-Tiwary (Hunter College) 11:35-11:50 Mechanisms Selective for 3-D Shapes Revealed By Adaptation to Real and Illusory Tilts Andrea Li, Ph.D. 11:50-12:00 PM Questions Session III: Poster Session 12:00-1:00 PM Lunch/Poster Session Session IV: Keynote Speaker 1:00-2:30 Words of Welcome: Thomas C. Strekas, Ph.D. Dean Division of Mathematics and Natural Sciences Queens College, CUNY Introduction of Keynote Speaker: Joshua Brumberg, Ph.D. Program Head, Neuropsychology Ph.D. Subprogram Department of Psychology, Queens College, CUNY Keynote Speaker: Bruce McEwen, Ph.D. Alfred E. Mirsky Professor and Head of the Harold and Margaret Laboratory of Neuroendocrinology The Rockefeller University Stress and the Mind-Body Connection: Lessons from Neuroendocrinology 2:30-2:35 Break Session V: Clinical Neuropsychology Moderator: Peter Sturmey, Ph.D.
    [Show full text]
  • It's a Golden
    It’s A Golden Age Miracles happen, and emotional plasticity may be one of them. A few years ago, I met with a warm, fatherly psychiatrist to explain the science and methods of EBT. During our conversation, there came a moment when words failed me. I suggested that he try one of the tools, and he demurred, so I volunteered to demonstrate the technique. I had not been aware of how stressed I was at the time – that I feared that I would never get this method out and would go to my grave with the tools still inside me. However, in the warm womb of his comfy office, I launched into using a tool. I fired up anger that sported a few expletives, made a brief pass through sadness with tears sparkling in my eyes, next touched on fear, and then on guilt. At that point, the bottom of my reptilian brain opened up. I had unlocked a previously unconscious, completely unreasonable expectation that had taken up residence in my brain. Perfect! Moments later, I had switched that expectation to a reasonable one of my choosing, and a burst of dopamine, oxytocin, and endorphins came over me. I was in joy! All of this had taken less than four minutes. He sat quietly. I had no idea what he would say. Then he gazed straight into my eyes and said, “Nothing in my 40 years of psychiatry has prepared me to explain what I just observed.” Through his eyes, my use of the tools must have seemed strange in two ways.
    [Show full text]
  • Analyzing the Impact of Stress- a Comparison Between a Factor
    Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011 Analyzing the Impact of Stress: A Comparison Between a Factor Analytic and a Composite Measurement of Allostatic Load J.G. Buckwalter, A. Rizzo, B.S. John L. Finlay, A. Wong, E. Chin, J. Wellman, Institute for C reative Technologies S. Smolinski Playa Vista, C A Fuller Graduate School of Psychology {jgbuckwalter, rizzo, bjohn} @ict.usc.edu Pasadena, C A {lisafinlay, andrew wong, estherchin, johnathanweljlom@afnu,l lseter.pehdaun iesmolinski} @fuller.edu T. E. Seeman University of California, Los Angeles Los Angeles, C A [email protected] A BST R A C T Stress is possibly the hallmark characteristic of the current conflicts confronting the United States. Extended and repeated deployments require the ability on the part of war-fighters to effectively process stress in ways never before routinely encountered. Stress is well defined as a series of psychological and physiological processes that occur in response to a stressor, or the perception of stress. The physiological response to stress follows an identified path, a robust neuroendocrine response leads to responses in the cardiovascular, metabolic, renal, inflammatory and LPPXQHV\VWHPV$IWHUDVWUHVVUHVSRQVHWKHERG\¶VQDWXUDOWHQGHQF\LVWRUHWXUQWRDVWHDG\VWDWHDSURFHVVFDOOHG allostasis. If the body is not effective in returning to homeostasis, or if the environment is such that stress is repeated, markers of dysfunction may be apparent in the physiological systems that respond to stress. A method of measuring multiple biomarkers of stress responsive systems and determining who shows consistent evidence of dysfunction was developed by Bruce McEwen and labeled allostatic load (AL). AL is most frequently measured by developing a level of risk for each biomarker and obtaining an AL score for the number of biomarkers the criterion for risk is met.
    [Show full text]
  • Sparking Change Science Lights the Way PAGE 28
    THE SOCIAL DYNAMICS OF THE 2019 A DOCTORAL STUDENT'S ENVIRONMENTALISM APS YEAR IN REVIEW SUMMER IN TECH ObserverVOL. 33, NO. 1 JANUARY 2020 Sparking Change Science lights the way PAGE 28 a publication of www.psychologicalscience.org/observer Observer ISSN: 1050-4672 Published 10 times per year by the Association for Psychological Science, the © 2020 Association for Psychological Science Federal ID Number: 73-1345573 Observer educates and informs the Association on matters affecting the research, All rights reserved. academic, and applied disciplines of psychology; promotes the scientific values of PUBLISHER Sarah Brookhart APS Members; reports and comments on issues of international interest to the EXECUTIVE EDITOR Melissa Welch-Ross EDITOR Leah Thayer psychological scientist community; and provides a vehicle for the dissemination DESIGN AND PRODUCTION EDITOR Raquel Herrera Fernandes of information on APS. EDITORIAL COORDINATOR Kim Armstrong SENIOR GRAPHIC DESIGNER Candy Cruz REPRINT PERMISSION: Photo copying OBSERVER FORUM:The Observer Observer content for classroom use is welcomes your comments and feedback. APS Board of Directors permitted at no charge. Students may not For consideration in the Observer Forum, PRESIDENT be charged more than the actual cost of letters should be sent to apsobserver@ Lisa Feldman Barrett – Northeastern University producing the photocopy. Source citation psychologicalscience.org. Unless oth- PRESIDENT-ELECT must indicate that the materials are from the erwise indicated, all correspondence Shinobu Kitayama – University of Michigan Observer, a publication of the Association for received will be considered for publica- IMMEDIATE PAST PRESIDENT Psychological Science. tion. The Observer does not guarantee Barbara Tversky – Teachers College, Columbia University and publication and reserves the right to edit APS does not assist in copyright requests Stanford University all content for length and style.
    [Show full text]
  • The Association of Triiodothyronine-To-Thyroxine Ratio with Body Mass Index in Obese Nigerian Children and Adolescents
    medical sciences Article The Association of Triiodothyronine-to-Thyroxine Ratio with Body Mass Index in Obese Nigerian Children and Adolescents Mathias Abiodun Emokpae * ID and Progress Arhenrhen Obazelu Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City 300001, Nigeria; [email protected] * Correspondence: [email protected]; Tel.: +234-803-451-1182 Received: 21 November 2017; Accepted: 14 December 2017; Published: 15 December 2017 Abstract: The interest in the relationship between thyroid dysfunction and obesity is on the increase. This study compares the triiodothyronine-to-thyroxine (T3/T4) ratio in obese and lean children and adolescents, and correlates thyroid hormones with body mass index (BMI) in obese Nigerian children. It is a retrospective study of records of 76 obese children and adolescents with a BMI of 31.7 ± 0.1 kg/m2 (26 males aged 10.9 ± 0.35 years, and 50 females aged 10.8 ± 0.4 years) that were referred to the laboratory for thyroid hormone evaluation because of their obese status. The controls were 20 age-matched non-obese apparently healthy subjects, with a mean age of 11.0 ± 0.47 years and a BMI of 20.2 ± 0.2 kg/m2. Serum T3, T4, and thyroid stimulating hormone (TSH) were determined using ELECSYS 1010 auto-analyzer (Roche Diagnostics, Penzberg, Germany). The BMI (p < 0.001), T3 (p < 0.01), TSH (p < 0.001) and T3/T4 ratio (p < 0.001) were significantly higher in obese than non-obese children and adolescents. Triiodothyronine (r = 0.230; p < 0.05), TSH (r = 0.272; p < 0.02), and T3/T4 ratio (r = 0.232; p < 0.05) correlated positively with BMI in obese children and adolescents.
    [Show full text]
  • A New Animal Welfare Concept Based on Allostasis ⁎ S
    Physiology & Behavior 92 (2007) 422–428 Review A new animal welfare concept based on allostasis ⁎ S. Mechiel Korte a,b,c, , Berend Olivier a,b, Jaap M. Koolhaas d a Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands b Rudolf Magnus Institute of Neuroscience, Utrecht University, The Netherlands c Animal Science Group, Wageningen University and Research Centre, Lelystad, The Netherlands d Department of Animal Physiology, Groningen University, Haren, The Netherlands Received 17 July 2006; received in revised form 27 September 2006; accepted 20 October 2006 Abstract Animal welfare is an increasing issue of public concern and debate. As a result, many countries are reconsidering the way animal welfare is embedded in the legislation and rules for housing and care of animals. This requires general agreement of what animal welfare is. Unfortunately, the current science of animal welfare is less scientific than what has been claimed. In our view, it is overly guided by anthropocentric thinking about how animals ought to be handled and neglects the latest concept of physiology: ‘The Allostasis Concept’. Allostasis, which means stability through change, has the potential to replace homeostasis as the core model of physiological regulation. Not constancy or freedoms, but capacity to change is crucial to good physical and mental health and good animal welfare. Therefore, not homeostasis but allostasis is at the basis of our new animal welfare concept. This paper is aimed at a broader scientific discussion of animal welfare that includes knowledge from the latest scientific developments in neurobiology and behavioral physiology, and generates views that are extremely relevant for the animal welfare discussion.
    [Show full text]