Mod Wsgi Documentation Release 4.9.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systems Programming II
Systems Programming II Iqbal Mohomed CSC 209 – Summer 2004 Week 7 Motivation for Signals • When a program forks into 2 or more processes, rarely do they execute independently of each other • The processes usually require some form of synchronization, and this is typically handled using signals. Job control is another important use • Data usually needs to be passed between processes also, and this is typically handled using pipes and sockets, which we will discuss shortly • Signals are usually generated by – Machine interrupts – The program itself, other programs, or the user (i.e. from the keyboard) Introduction to Signals • When a C program receives a signal, control is immediately passed to a function called a signal handler • The signal handler function can execute some C statements and exit in three different ways: – Return control to the place in the program which was executing when the signal occurred – Return control to some other point in the program – Terminate the program by calling the exit (or _exit) function signal() • A default action is provided for each kind of signal, such as terminate, stop or ignore • For nearly all signal types, the default action can be changed using the signal() function. The exceptions are SIGKILL and SIGSTOP. The handler is defined as follows: – typedef void (*sighandler_t)(int); • To change the handler: – sighandler_t signal(int signum, sighandler_t handler); More on signal() • For each process, the OS maintains a table of actions that should be performed for each kind of signal. The signal() function changes the table entry for the signal named as the first argument to the value provided as the second argument. -
Building a Scalable Index and a Web Search Engine for Music on the Internet Using Open Source Software
Department of Information Science and Technology Building a Scalable Index and a Web Search Engine for Music on the Internet using Open Source software André Parreira Ricardo Thesis submitted in partial fulfillment of the requirements for the degree of Master in Computer Science and Business Management Advisor: Professor Carlos Serrão, Assistant Professor, ISCTE-IUL September, 2010 Acknowledgments I should say that I feel grateful for doing a thesis linked to music, an art which I love and esteem so much. Therefore, I would like to take a moment to thank all the persons who made my accomplishment possible and hence this is also part of their deed too. To my family, first for having instigated in me the curiosity to read, to know, to think and go further. And secondly for allowing me to continue my studies, providing the environment and the financial means to make it possible. To my classmate André Guerreiro, I would like to thank the invaluable brainstorming, the patience and the help through our college years. To my friend Isabel Silva, who gave me a precious help in the final revision of this document. Everyone in ADETTI-IUL for the time and the attention they gave me. Especially the people over Caixa Mágica, because I truly value the expertise transmitted, which was useful to my thesis and I am sure will also help me during my professional course. To my teacher and MSc. advisor, Professor Carlos Serrão, for embracing my will to master in this area and for being always available to help me when I needed some advice. -
Unix System Programming Overview Outline What Is a Signal? Signal
Overview Last Week: ● How to program UNIX processes (Chapters 7-9) ● fork() and exec() Unix System Programming This Week, and next week: ● UNIX inter-process communication mechanisms: signals, Signals » (next week) pipes and FIFOs. ● How to program with UNIX signals (Chapter 10) » http://en.wikipedia.org/wiki/Unix_signal ● Non-local jumps (Chapter 7) ● Focus on the sigaction() function Maria Hybinette, UGA 1 Maria Hybinette, UGA 2 Outline What is a Signal? ● A signal is an asynchronous event which is ● What is a UNIX signal? delivered to a process (instantiated by a small message) ● Signal types ● Asynchronous means that the event can occur ● Generating signals at any time (e.g., posting at a bulletin board ) ● Responding to a signal » may be unrelated to the execution of the process ● Common uses of a signal – e.g., user types Ctrl-C, or the modem hangs (SIGINT) ● Implementing a read() time-out – e.g,, user types Ctrl-Z (SIGTSTP) ● Sent from kernel (e.g. detects divide by zero ● Non-local jumps setjmp()/longjmp() (SIGFPE) or could be at the request of another ● POSIX signals process to send to another) ● Interrupted system calls ● Only information that a signal carries is its ● System calls inside handlers unique ID and that it arrived Maria Hybinette, UGA 3 Maria Hybinette, UGA 4 Signal Types (31 in POSIX) Signal Sources terminal memory ID Name Description Default Action driver management shell command 2 SIGINT Interrupt from keyboard (^C) terminate Ctr-C SIGINT SIGHUP 3 SIGQUIT Quit from keyboard (^\) terminate & core SIGSEGV 9 SIGKILL -
POSIX Signals
CSE 410: Systems Programming POSIX Signals Ethan Blanton Department of Computer Science and Engineering University at Buffalo Introduction Signals Blocking Concurrency Sending Signals Summary References POSIX Signals POSIX signals are another form of interprocess communication. They are also a way to create concurrency in programs. For these two reasons, they are rather complicated and subtle! Signals provide a simple message passing mechanism. © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Signals as Messages POSIX signals are asynchronous messages. Asynchronous means that their reception can occur at any time.1 The message is the reception of the signal itself. Each signal has a number, which is a small integer. POSIX signals carry no other data. 1Almost. We’ll see how to control it later. © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Signal Types There are two basic types of POSIX signals: Reliable signals Real-time signals Real-time signals are much more complicated. In particular, they can carry data. We will discuss only reliable signals in this lecture. © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Asynchronous Reception From the point of view of the application: Signals can be blocked or ignored Enabled signals may be received between any two processor instructions A received signal can run a user-defined function called a signal handler This means that enabled signals and program code must very carefully manipulate shared or global data! © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Signals POSIX defines a number of signals by name and number. -
Programming with POSIX Threads II
Programming with POSIX Threads II CS 167 IV–1 Copyright © 2008 Thomas W. Doeppner. All rights reserved. Global Variables int IOfunc( ) { extern int errno; ... if (write(fd, buffer, size) == –1) { if (errno == EIO) fprintf(stderr, "IO problems ...\n"); ... return(0); } ... } CS 167 IV–2 Copyright © 2008 Thomas W. Doeppner. All rights reserved. Unix was not designed with multithreaded programming in mind. A good example of the implications of this is the manner in which error codes for failed system calls are made available to a program: if a system call fails, it returns –1 and the error code is stored in the global variable errno. Though this is not all that bad for single-threaded programs, it is plain wrong for multithreaded programs. Coping • Fix Unix’s C/system-call interface • Make errno refer to a different location in each thread – e.g. #define errno __errno(thread_ID) CS 167 IV–3 Copyright © 2008 Thomas W. Doeppner. All rights reserved. The ideal way to solve the “errno problem” would be to redesign the C/system-call interface: system calls should return only an error code. Anything else to be returned should be returned via result parameters. (This is how things are done in Windows NT.) Unfortunately, this is not possible (it would break pretty much every Unix program in existence). So we are stuck with errno. What can we do to make errno coexist with multithreaded programming? What would help would be to arrange, somehow, that each thread has its own private copy of errno. I.e., whenever a thread refers to errno, it refers to a different location from any other thread when it refers to errno. -
POSIX Signal Handling in Java
Technical Document Series POSIX Signal Handling in Java POSIX Signal Handling In Java Introduction POSIX signals inform a running process of external events, such as the user wishing to kill the process, or the operating system signaling an impending shutdown, or the process being suspended or reinstated; or the process may have violated a resource constraint, such as excessive CPU usage or attempts to access areas outside its permitted memory space, and is asked to shutdown. In short, POSIX signals serve many different purposes. Some are even up to interpretation, such as the HUP (HangUP) signal, which is commonly used to inform a process that something about its environment has changed and the process should adjust accordingly. Some programs may interpret this to mean that the configuration has changed and needs to be reloaded; or the log file has been moved for archiving purposes and a new one should be started. The use of signals is widespread, especially on Unix-based operating systems, but Java provides no standard interface for a Java application to hear and react to them. This document shows you how to get around this limitation. The Good, the Bad, and the Ugly The good news is that there is a way to intercept POSIX signals and react to them in Java. This would allow your Java program to avoid being killable with ^C (SIGINT), for example, even ignore termination requests from the operating system (SIGTERM). Neither of these is necessarily a good idea, of course, unless you know exactly why you would want to catch these signals and either handle them yourself or ignore them altogether. -
Processes and Job Control
Processes and Job Control Hour 17 PObjectives < Definitions: process, orphan, and zombie < System processes < Process creation < Examining processes: the ps command < Job control: &, nohup, fg, bg, jobs, ( ), and kill < Exit status Copyright © 1998-2002 Delroy A. Brinkerhoff. All Rights Reserved. Hour 17 Unix Slide 1 of 12 Process Also called a job by C and Korn shells PWhen a program or executable file is loaded from disk and started running (i.e., when a command is run), it is called a process vi pid 641 < identified by a unique process ID (PID) number < has an owner vi < private data vi PA program can be loaded more than once pid 895 < creates multiple processes vi < each process has a different PID < each process may have a different owner PPIDs are unique, nonnegative integers < numbers recycle without collisions Hour 17 Unix Slide 2 of 12 System Processes Processes created during system boot P0System kernel < “hand crafted” at boot < called swap in older versions (swaps the CPU between processes) < called sched in newer versions (schedules processes) < creates process 1 P1 init (the parent of all processes except process 0) < general process spawner < begins building locale-related environment < sets or changes the system run-level P2 page daemon (pageout on most systems) P3 file system flusher (fsflush) Hour 17 Unix Slide 3 of 12 Process Life Cycle Overview of creating new processes fork init init pid 467 Pfork creates two identical pid 1 exec processes (parent and child) getty pid 467 Pexec < replaces the process’s instructions -
Site Map - Apache HTTP Server 2.0
Site Map - Apache HTTP Server 2.0 Apache HTTP Server Version 2.0 Site Map ● Apache HTTP Server Version 2.0 Documentation ❍ Release Notes ■ Upgrading to 2.0 from 1.3 ■ New features with Apache 2.0 ❍ Using the Apache HTTP Server ■ Compiling and Installing Apache ■ Starting Apache ■ Stopping and Restarting the Server ■ Configuration Files ■ How Directory, Location and Files sections work ■ Server-Wide Configuration ■ Log Files ■ Mapping URLs to Filesystem Locations ■ Security Tips ■ Dynamic Shared Object (DSO) support ■ Content Negotiation ■ Custom error responses ■ Setting which addresses and ports Apache uses ■ Multi-Processing Modules (MPMs) ■ Environment Variables in Apache ■ Apache's Handler Use ■ Filters ■ suEXEC Support ■ Performance Hintes ■ URL Rewriting Guide ❍ Apache Virtual Host documentation ■ Name-based Virtual Hosts ■ IP-based Virtual Host Support ■ Dynamically configured mass virtual hosting ■ VirtualHost Examples ■ An In-Depth Discussion of Virtual Host Matching ■ File descriptor limitations ■ Issues Regarding DNS and Apache ❍ Apache Server Frequently Asked Questions http://httpd.apache.org/docs-2.0/sitemap.html (1 of 4) [5/03/2002 9:53:06 PM] Site Map - Apache HTTP Server 2.0 ■ Support ❍ Apache SSL/TLS Encryption ■ SSL/TLS Encryption: An Introduction ■ SSL/TLS Encryption: Compatibility ■ SSL/TLS Encryption: How-To ■ SSL/TLS Encryption: FAQ ■ SSL/TLS Encryption: Glossary ❍ Guides, Tutorials, and HowTos ■ Authentication ■ Apache Tutorial: Dynamic Content with CGI ■ Apache Tutorial: Introduction to Server Side Includes ■ Apache -
Improved Methods for Mining Software Repositories to Detect Evolutionary Couplings
IMPROVED METHODS FOR MINING SOFTWARE REPOSITORIES TO DETECT EVOLUTIONARY COUPLINGS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Abdulkareem Alali August, 2014 Dissertation written by Abdulkareem Alali B.S., Yarmouk University, USA, 2002 M.S., Kent State University, USA, 2008 Ph.D., Kent State University, USA, 2014 Approved by Dr. Jonathan I. Maletic Chair, Doctoral Dissertation Committee Dr. Feodor F. Dragan Members, Doctoral Dissertation Committee Dr. Hassan Peyravi Dr. Michael L. Collard Dr. Joseph Ortiz Dr. Declan Keane Accepted by Dr. Javed Khan Chair, Department of Computer Science Dr. James Blank Dean, College of Arts and Sciences ii TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... III LIST OF FIGURES ..................................................................................................... VIII LIST OF TABLES ....................................................................................................... XIII ACKNOWLEDGEMENTS ..........................................................................................XX CHAPTER 1 INTRODUCTION ................................................................................... 22 1.1 Motivation and Problem .......................................................................................... 24 1.2 Research Overview ................................................................................................ -
NYC*BUG in Perspective
Tens Years of NYC*BUG in Perspective versioning ● 10 years is actually December/January ● aimed at a broader audience than just people here ● start an UG? ● “organizational” angle THIS IS A DOT RELEASE my perspective ● I'm not the only one ● many other significant players ● my role exaggerated ● the “philosophical” one ● difficult talk: 10 years I posit that ● We're not the best thing since sliced bread ● We're just a user group But... ● Much significant impact, in NYC and beyond ● The community is better to have us ● Would be better if there were more like us I posit that ● We're not the best thing since sliced bread ● We're just a user group But... ● Much significant impact, in NYC and beyond ● The community is better to have us ● Would be better if there were more like us What Was Clear ● No to “Hobbyism” ● No to “Professionalism” ● No to “Sales” (Apple 2004 meeting) ● Neither a software project nor technical meritocracy ● Free, open, loose ● Needed LOTS of planning (mailing list stats) ● Viewed ourselves as part of a wider community, whether they liked it or not ● People + Technology = success For instance... http://mail-index.netbsd.org/regional-nyc/2004/01/13/0003.html Subject: Re: NYCBUG To: None <[email protected]> From: Michael Shalayeff <[email protected]> List: regional-nyc Date: 01/13/2004 12:51:01 Making, drinking tea and reading an opus magnum from Andrew Brown: > > http://lists.freebsd.org/pipermail/freebsd-advocacy/2004- January/000873.html > > i wonder if beer is involved...there's no mention of it in that posting. -
System Calls & Signals
CS345 OPERATING SYSTEMS System calls & Signals Panagiotis Papadopoulos [email protected] 1 SYSTEM CALL When a program invokes a system call, it is interrupted and the system switches to Kernel space. The Kernel then saves the process execution context (so that it can resume the program later) and determines what is being requested. The Kernel carefully checks that the request is valid and that the process invoking the system call has enough privilege. For instance some system calls can only be called by a user with superuser privilege (often referred to as root). If everything is good, the Kernel processes the request in Kernel Mode and can access the device drivers in charge of controlling the hardware (e.g. reading a character inputted from the keyboard). The Kernel can read and modify the data of the calling process as it has access to memory in User Space (e.g. it can copy the keyboard character into a buffer that the calling process has access to) When the Kernel is done processing the request, it restores the process execution context that was saved when the system call was invoked, and control returns to the calling program which continues executing. 2 SYSTEM CALLS FORK() 3 THE FORK() SYSTEM CALL (1/2) • A process calling fork()spawns a child process. • The child is almost an identical clone of the parent: • Program Text (segment .text) • Stack (ss) • PCB (eg. registers) • Data (segment .data) #include <sys/types.h> #include <unistd.h> pid_t fork(void); 4 THE FORK() SYSTEM CALL (2/2) • The fork()is one of the those system calls, which is called once, but returns twice! Consider a piece of program • After fork()both the parent and the child are .. -
The GNU General Public License (GPL) Does Govern All Other Use of the Material That Constitutes the Autoconf Macro
Notice About this document The following copyright statements and licenses apply to software components that are distributed with various versions of the StorageGRID PreGRID Environment products. Your product does not necessarily use all the software components referred to below. Where required, source code is published at the following location: ftp://ftp.netapp.com/frm-ntap/opensource/ 215-10078_A0_ur001-Copyright 2015 NetApp, Inc. All rights reserved. 1 Notice Copyrights and licenses The following component is subject to the BSD 1.0 • Free BSD - 44_lite BSD 1.0 Copyright (c) 1982, 1986, 1990, 1991, 1993 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. • All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by the University of California, Berkeley and its contributors. • Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.