Using 34-S As a Tracer of Dissolved Sulfur Species from Springs to Cave Sulfate
Total Page:16
File Type:pdf, Size:1020Kb
Using 34-S as a Tracer of Dissolved Sulfur Species from Springs to Cave Sulfate Deposits in the Cerna Valley, Romania by Jonathan Sumrall A thesis submitted in partial fulfillment of the requirements for the degree of Master’s of Science Department of Geology College of Arts and Sciences University of South Florida Major Professor: Bogdan Onac, Ph.D. Jonathan Wynn, Ph.D. Henry L. Vacher, Ph.D. Date of Approval: March 23, 2009 Keywords: stable isotope, karst, geochemistry, mineralogy, sulfuric acid speleogenesis © Copyright 2009, Jonathan Sumrall Dedication To my best friend, Christina, for the love and support to get me through my best and worst days; my parents, Kenny and Kathy, for instilling a work ethic of banging my head against a wall until I find a solution; my grandmother, Betty, for continual support regardless of why, when, or how; and all of my other friends who are constant reminders of happiness to me. Acknowledgements Special thanks go out to my major advisor, Dr. Bogdan Onac, and my committee members, Dr. Jonathan Wynn and Dr. Len Vacher for their guidance and support throughout this project. Thank you to Dr. Wynn for the guidance and patience in dealing with the many problems that arose during this project. The Domogled-Valea Cernei National Park generously allowed access to the field area and also granted approval to remove specimens for analysis. Dr. I. Povara from the "Emil Racovita" Institute of Speleology, Vera Darmiceanu ("Babes-Bolyai" University in Cluj), Lucian Nicoliţă, and Dragosa Viorel (Prusik Timisoara Speleo Club) provided an indispensable assistance during our field campaigns. The Romanian National University Research Council (grant ID_544 to Onac) contributed funds for this research. Many people have helped me along my path to reach USF; mostly I would like to thank Dr. John Mylroie and his wife Joan Mylroie for continual guidance and support from my undergraduate days at MSU to the present. Note To Reader Note to Reader: The original manuscript of this document contains color that is necessary for understanding the data. The original thesis is on file with the USF library in Tampa, Florida, USA Table of Contents LIST OF FIGURES ........................................................................................................... vi LIST OF TABLES ........................................................................................................... viii ABSTRACT ....................................................................................................................... ix Chapter 1: INTRODUCTION............................................................................................. 1 Chapter 2: DESCRIPTION OF STUDY AREA ................................................................ 3 2.1 Geographic Setting............................................................................................ 3 2.2 Geologic Setting................................................................................................ 5 2.3 Hydrogeology ................................................................................................... 7 2.4 Caves and Karst .............................................................................................. 11 Chapter 3: BACKGROUND INFORMATION ............................................................... 14 3.1 Stable Sulfur Isotopes ..................................................................................... 14 3.2 Natural Range of Sulfur Isotopes .................................................................... 15 3.3 Redox Reactions ............................................................................................. 16 3.4 Bacterial Sulfate Reduction and Thermochemical Sulfate Reduction ............ 18 3.5 Sulfuric Acid Speleogenesis: History ............................................................. 18 3.6 Gypsum in Caves ............................................................................................ 20 3.7 Previous Sulfur Isotope Studies: Caves .......................................................... 22 Chapter 4: METHODOLOGY .......................................................................................... 25 4.1 Sample and Data Collection............................................................................ 25 4.2 Mass Spectrometry.......................................................................................... 27 iv 4.3 Total Sulfur Isotope Calculations ................................................................... 29 4.4 Dissolved Inorganic Carbon Samples ............................................................. 29 Chapter 5: RESULTS ....................................................................................................... 30 5.1 Spring Data: General Field Data ..................................................................... 30 5.2 Spring Data: Stable Sulfur Isotope Measurements ......................................... 32 5.3 Springs: Total Sulfur Isotopic Composition of Spring Water ........................ 33 5.4 DIC of Spring Waters ..................................................................................... 35 5.5 Cave Sulfate Isotope Data ............................................................................... 35 Chapter 6: DISCUSSION ................................................................................................. 38 6.1 Sulfur Source and Fractionation .................................................................. 38 6.2 Sulfur Source .................................................................................................. 39 6.3 Development of a Theoretical Model of Rayleigh Distillation ...................... 42 6.4 Cerna Springs: Dissolved Sulfur Species ....................................................... 45 6.5 TDS and its relationship to total dissolved sulfur ........................................... 51 6.6 Caves: Sulfur Isotopes .................................................................................... 55 Bîrzoni Cave (gypsum) ............................................................................. 55 Great Sălitrari Cave................................................................................... 55 Adam and Aburi Caves ............................................................................. 58 Diana and Despicatura Caves ................................................................... 59 Chapter 7: CONCLUSIONS ............................................................................................. 60 REFERENCES ................................................................................................................ 63 APPENDICES .................................................................................................................. 67 APPENDIX A: Cave Maps and Sample Locations .......................................................... 68 v List of Figures Figure 1. Physiographical map of Romania showing the study area. ................................. 3 Figure 2. Blue-white, H2S rich spring water from the Neptun springs. .............................. 4 Figure 3. Stability field of aqueous sulfur species. ............................................................. 5 Figure 4. A generalized cross-section of the Cerna Valley. ............................................... 6 Figure 5. The major tectonic features that control water flow. ........................................... 8 Figure 6. Generalized cross-section showing source of thermomineral waters................ 10 Figure 7. Picture showing the limestone in the Cerna Valley. .......................................... 11 Figure 8. Picture showing morphology and gypsum deposits. ......................................... 13 Figure 9. Sulfur isotopic value of various sources. ........................................................... 16 Figure 10. A redox tower showing the half-reactions....................................................... 17 Figure 11. A generalized schematic of the reduction of sulfate. ...................................... 20 Figure 12. Massive gypsum deposits (10-12 cm) in Ion Bîrzoni Cave ............................ 22 Figure 13. Diagram of gypsum precipitation in Frasassi caves. ...................................... 24 Figure 14. Picture of Dr. Bogdan Onac sampling from the Neptun 3 .............................. 26 Figure 15. Picture of Dr. Jonathan Wynn measuring dissolved sulfide. ........................... 27 Figure 16. Spring and well locations. ............................................................................... 31 Figure 17. Location of caves that were sampled............................................................... 36 Figure 18 Generalized geologic cross section of the Cerna Valley. ................................. 40 Figure 19 Plot of total sulfur isotopic signature................................................................ 41 Figure 20. Theoretical model of sulfate reduction ............................................................ 43 vi Figure 21. Plot showing the change in sulfide and sulfate moving upstream ................... 46 Figure 22. Plot showing the isotopic composition of dissolved sulfur species. ............... 48 Figure 23. Plot showing percent composition of methane in spring water. ...................... 50 Figure 24. Plot of δ13C of DIC in spring waters. .............................................................. 51 Figure 25. Plot showing two populations of springs