Absorbing Sets in Infinite-Dimensional Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis 1 Winter Semester 2013-14
Functional analysis 1 Winter semester 2013-14 1. Topological vector spaces Basic notions. Notation. (a) The symbol F stands for the set of all reals or for the set of all complex numbers. (b) Let (X; τ) be a topological space and x 2 X. An open set G containing x is called neigh- borhood of x. We denote τ(x) = fG 2 τ; x 2 Gg. Definition. Suppose that τ is a topology on a vector space X over F such that • (X; τ) is T1, i.e., fxg is a closed set for every x 2 X, and • the vector space operations are continuous with respect to τ, i.e., +: X × X ! X and ·: F × X ! X are continuous. Under these conditions, τ is said to be a vector topology on X and (X; +; ·; τ) is a topological vector space (TVS). Remark. Let X be a TVS. (a) For every a 2 X the mapping x 7! x + a is a homeomorphism of X onto X. (b) For every λ 2 F n f0g the mapping x 7! λx is a homeomorphism of X onto X. Definition. Let X be a vector space over F. We say that A ⊂ X is • balanced if for every α 2 F, jαj ≤ 1, we have αA ⊂ A, • absorbing if for every x 2 X there exists t 2 R; t > 0; such that x 2 tA, • symmetric if A = −A. Definition. Let X be a TVS and A ⊂ X. We say that A is bounded if for every V 2 τ(0) there exists s > 0 such that for every t > s we have A ⊂ tV . -
HISTORICAL NOTES Chapter 1:. the Idea of Topologizing the Set of Continuous Functions from One Topological Space Into Another To
HISTORICAL NOTES Chapter 1:. The idea of topologizing the set of continuous functions from one topological space into another topological space arose from the notions of pointwise and uniform convergence of sequences of functions. Apparently the work of Ascoli [1883], [1889] and Hadamard [1898] marked the beginning of function space theory. The topology of pointwise convergence and the topology of uniform convergence are among the first function space topologies considered in the early years of general topology. The I supremum metric topology was studied in Frechet [19061. The paper of Tychonoff [1935] showed that the (Tychonoff) product on the set RX is nothing but the topology of pointwise convergence. In 1945, Fox [19451 defined the compact-open topology. Shortly thereafter, Arens [1946] studied this topology, which he called k-topology. Among other things which Arens proved was the compact-open topology version of Theorem 1.2.3. Set-open topologies in a more general setting were studied by Arens and Dugundji [1951] in connection with the concepts of admissible and proper topologies. Theorem 1.2.5 is due to Jackson [1952], and Example 1.2.7 can be found in Dugundji [1968]. Chapter 1:. Admissible [i.e., conjoining) topologies were introduced by Arens [1946] and splitting (i.e., proper) topologies were studied by Arens and Dugundji [1951], where they proved Theorem 2.5.3. Proofs of Theorem 2.5.2 and Corollary 2.5.4.a can be found in Fox [1945]. Corollary 2.5.7 is apparently due to Jackson [1952]; and Morita [1956] proved Corollary 2.5.8. -
Non-Linear Inner Structure of Topological Vector Spaces
mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set. -
On a Special Metric
Houston Journal of Mathematics c 2000 University of Houston Volume 26, No. 4, 2000 ON A SPECIAL METRIC YUN ZIQIU AND HEIKKI J.K. JUNNILA Communicated by Jun-iti Nagata Abstract. In this note, we prove that whenever d is a compatible metric for a hedgehog space J having more than 2c spines, there exists ¯ > 0 and x J such that the family B (y; ¯): y B (x; ¯) contains more than 2 f d 2 d g c distinct sets. This result provides a negative answer to a question raised by Nagata in [6]. We also give positive answers to the same question under some extra conditions. 1. Introduction J. Nagata proved in [5] that each metrizable space X has a compatible metric d such that for every ¯ > 0, the family B (x; ¯): x X of all ¯-balls of (X; d) f d 2 g is closure-preserving, and in [6] he raised the following question: Does there exist, on each metrizable space X, a compatible metric d such that for every ¯ > 0, the family B (x; ¯): x X of all ¯-balls of (X; d) is hereditarily f d 2 g closure-preserving (as an unindexed family)? In this note, we answer the above question negatively by proving that there exists no compatible metric d on the hedgehog space H = J((2c)+) such that for every ¯ > 0, the family B (x; ¯): x H of all ¯-balls is point ¬nite or even f d 2 g point countable (as an unindexed family). We also show that the answer to the above question is positive under some added restrictions. -
NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2. -
[Math.GN] 10 Apr 2002 O Vr Midset Every for N Scle a Called Is Rpriscnb Prahdtruhmidsets
Proceedings of the Ninth Prague Topological Symposium Contributed papers from the symposium held in Prague, Czech Republic, August 19–25, 2001 SPECIAL METRICS YASUNAO HATTORI Abstract. This is a survey on special metrics. We shall present some results and open questions on special metrics mainly appeared in the last 10 years. 1. Introduction This is a survey on special metrics. We shall present some results and open questions on special metrics mainly appeared in the last 10 years. We shall consider metrizable spaces and all metrics induce the original topology of a given metrizable space. For a metrizable space X, there are many metrics which induce the original topology of X. Some of them may determine topological properties of X. For example, it is well known that a metrizable space X is separable if and only if X admits a totally bounded metric, and X is compact if and only if X admits a complete totally bounded metric. 2. Properties related to midsets Let (X, ρ) be a metric space and y 6= z be distinct points of X. A set of the form M(y, z)= {x ∈ X : ρ(x,y)= ρ(x, z)} is called a midset or a bisector. Midsets are a geometrically intuitive concept, and several topological properties can be approached through midsets. arXiv:math/0204130v1 [math.GN] 10 Apr 2002 For example, the covering dimension of a separable metrizable space X can be characterized by midsets: Theorem 1 (Janos-Martin [11]). A separable metrizable space X has dim X ≤ n if and only if X admits a totally bounded metric ρ such that dim M ≤ n−1 for every midset M in X. -
Vladimir V. Tkachuk Special Features of Function Spaces
Problem Books in Mathematics Vladimir V. Tkachuk A Cp-Theory Problem Book Special Features of Function Spaces Problem Books in Mathematics Series Editors: Peter Winkler Department of Mathematics Dartmouth College Hanover, NH 03755 USA For further volumes: http://www.springer.com/series/714 Vladimir V. Tkachuk ACp-Theory Problem Book Special Features of Function Spaces 123 Vladimir V. Tkachuk Departamento de Matematicas Universidad Autonoma Metropolitana-Iztapalapa San Rafael Atlixco, Mexico City, Mexico ISSN 0941-3502 ISBN 978-3-319-04746-1 ISBN 978-3-319-04747-8 (eBook) DOI 10.1007/978-3-319-04747-8 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014933677 Mathematics Subject Classification (2010): 54C35 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Barrelled Spaces With(Out) Separable Quotients
Bull. Aust. Math. Soc. 90 (2014), 295–303 doi:10.1017/S0004972714000422 BARRELLED SPACES WITH(OUT) SEPARABLE QUOTIENTS JERZY K ˛AKOL, STEPHEN A. SAXON and AARON R. TODD (Received 8 January 2014; accepted 18 April 2014; first published online 13 June 2014) Abstract While the separable quotient problem is famously open for Banach spaces, in the broader context of barrelled spaces we give negative solutions. Obversely, the study of pseudocompact X and Warner bounded X allows us to expand Rosenthal’s positive solution for Banach spaces of the form Cc(X) to barrelled spaces of the same form, and see that strong duals of arbitrary Cc(X) spaces admit separable quotients. 2010 Mathematics subject classification: primary 46A08; secondary 54C35. Keywords and phrases: barrelled spaces, separable quotients, compact-open topology. 1. Introduction In this paper locally convex spaces (lcs’s) and their quotients are assumed to be infinite- dimensional and Hausdorff. The classic separable quotient problem asks if all Banach spaces have separable quotients. Do all barrelled spaces? We find some that do not (Section2), and add to the long list of those that do (Section3). Schaefer [27, para. 7.8(i), page 161] and others observe that: 0 ? 0 0 0 (∗) If F is a subspace of a normed space E, then Eβ=F t Fβ, where Eβ and Fβ denote the respective strong duals of E and F. Consequently, reflexive Banach spaces have separable quotients [30, Example 15-3-2]. 1 When X is compact, the Banach space Cc(X) contains c0, and ` is a separable 0 quotient of Cc(X)β by (∗). -
Universal Free G-Spaces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 157 (2010) 1296–1301 Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/topol Universal free G-spaces Natella Antonyan Departamento de Matemáticas, Division de Ingeniería y Arquitectura, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, 14380 México Distrito Federal, Mexico article info abstract Article history: For a compact Lie group G,weprovetheexistenceofauniversalG-space in the class of all Received 28 October 2008 paracompact (respectively, metrizable, and separable metrizable) free G-spaces. We show Received in revised form 11 March 2009 that such a universal free G-space cannot be compact. Accepted 27 March 2009 © 2009 Elsevier B.V. All rights reserved. MSC: 54H150 54B05 54D35 Keywords: Universal free G-space Join Orbit space Cross-section 1. Introduction By a G-space we mean a topological space X together with a fixed continuous action (g, x) → gx of a topological group G on X. In this paper we are mostly interested in free G-spaces, where the acting group G is compact Lie. Recall that a G-space X is free if for every x ∈ X the equality gx = x implies g = e,theunityofG.AG-space U is called universal for a given class of G-spaces G–P if U ∈ G–P and U containsasaG-subspace a G-homeomorphic copy of any G-space X from the class G–P. In [2] it is proved that if G is a compact Lie group then there exists a locally compact, noncompact free G-space which is universal in the class of all Tychonoff free G-spaces. -
Convexity “Warm-Up” II: the Minkowski Functional
CW II c Gabriel Nagy Convexity “Warm-up” II: The Minkowski Functional Notes from the Functional Analysis Course (Fall 07 - Spring 08) Convention. Throughout this note K will be one of the fields R or C, and all vector spaces are over K. In this section, however, when K = C, it will be only the real linear structure that will play a significant role. Proposition-Definition 1. Let X be a vector space, and let A ⊂ X be a convex absorbing set. Define, for every element x ∈ X the quantity1 qA(x) = inf{τ > 0 : x ∈ τA}. (1) (i) The map qA : X → R is a quasi-seminorm, i.e. qA(x + y) ≤ qA(x) + qA(y), ∀ x, y ∈ X ; (2) qA(tx) = tqA(x), ∀ x ∈ X , t ≥ 0. (3) (ii) One has the inclusions: {x ∈ X : qA(x) < 1} ⊂ A ⊂ {x ∈ X : qA(x) ≤ 1}. (4) (iii) If, in addition to the above hypothesis, A is balanced, then qA is a seminorm, i.e. besides (2) and (3) it also satisfies the condition: qA(αx) = |α| · qA(x), ∀ x ∈ X , α ∈ K. (5) The map qA : X → R is called the Minkowski functional associated to A. Proof. (i). To prove (2) start with two elements x, y ∈ X and some ε > 0. By the definition (1) there exist positive real numbers α < qA(x) + ε and β < qA(y) + ε, such that x ∈ αA and y ∈ βA. By Exercise ?? from LCTVS I, it follows that x + y ∈ αA + βA = (α + β)A, so by the definition (1) we get qA(x + y) ≤ α + β < qA(x) + qA(x) + 2ε. -
Kov Conjecture Fails for Simple Analytical Reasons
Journal of Pure and Applied Algebra 216 (2012) 1700–1703 Contents lists available at SciVerse ScienceDirect Journal of Pure and Applied Algebra journal homepage: www.elsevier.com/locate/jpaa The Ra˘ıkov conjecture fails for simple analytical reasons J. Wengenroth Universität Trier, FB IV – Mathematik, 54286 Trier, Germany article info a b s t r a c t Article history: We show that a conjecture of Ra˘ıkov from category theory fails for simple reasons which Received 11 November 2011 reflect very concrete properties of, for example, partial differential operators. Received in revised form 19 December 2011 ' 2012 Elsevier B.V. All rights reserved. Available online 27 January 2012 Communicated by B. Keller MSC: 18E05; 18E10; 46A08; 46M15 1. Pre-, semi-, quasi The Ra˘ıkov conjecture states that every semi-abelian category is quasi-abelian. The occurrence of semi and quasi sounds a bit as if this conjecture would be related to the ``theory of piffles'' invented by A.K. Austin [1]. This, however, is not the case. In many concrete situations, one meets additive categories which are not abelian, for instance if one considers topological abelian groups or vector spaces instead of their naked algebraic counterparts. Nevertheless, in order to apply homological algebra one then indeed needs weaker properties than the usual invertibility of fN in the classroom diagram. f X - Y 6 ? [ fN coim f - im f In the case of topological abelian groups, fN remains bijective and hence a monomorphism and an epimorphism, the non- invertibility is only due to topological reasons. It was thus most natural to define a semi-abelian category just by this property, as was done by Palamodov [9] in his thorough investigation of homological aspects in applications of the theory of locally convex spaces (note that Ra˘ıkov [11] used the term semi-abelian in a different sense). -
Equivariant Completions
Comment.Math.Univ.Carolin. 35,3 (1994)539–547 539 Equivariant completions Michael Megrelishvili (Levy)* Abstract. An important consequence of a result of Katˇetov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact σ-compact acting group. Keywords: equivariant completion, factorization, dimension Classification: 54H15, 22A05 Introduction Let α : G×X → X be a continuous action of a topological group G on a uniform space (X, µ). We give a sufficient condition for the existence of a continuous extensionα ˆ : Gˆ × Xˆ → Xˆ where Gˆ is the sup-completion (i.e. the completion with respect to its two-sided uniformity) and (X,ˆ µˆ) is the completion of (X, µ). Our sufficient condition is necessary in the following important situation: Gˆ is Baire, µ is metrizable and for every g ∈ Gˆ the g-transition Xˆ → Xˆ isµ ˆ-uniformly continuous. As an application of a general equivariant completion theorem we unify the verification of the sup-completeness property for some natural groups. An important consequence of a result of Katˇetov [10] and Morita [14] states that every metrizable space is contained in a complete metrizable space of the same dimension (see Engelking [6, 7.4.17]). Using the G-factorization theorem [13] we obtain an equivariant generalization of the last fact in the case of locally compact σ-compact acting group G. This generalization, at the same time, improves some “equivariant results” of de Groot [7] and de Vries [16].