The Bgg Resolution and the Weyl Character Formula
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Localization Argument for Characters of Reductive Lie Groups: an Introduction and Examples Matvei Libine
This is page 375 Printer: Opaque this A localization argument for characters of reductive Lie groups: an introduction and examples Matvei Libine In Honor of Jacques Carmona ABSTRACT In this article I describe my recent geometric localization argument dealing with actions of noncompact groups which provides a geometric bridge between two entirely different character formulas for reductive Lie groups and answers the question posed in [Sch]. A corresponding problem in the compact group setting was solved by N. Berline, E. Getzler and M. Vergne in [BGV] by an application of the theory of equivariant forms and, particularly, the fixed point integral localization formula. This localization argument seems to be the first successful attempt in the direction of build- ing a similar theory for integrals of differential forms, equivariant with respect to actions of noncompact groups. I will explain how the argument works in the SL(2, R) case, where the key ideas are not obstructed by technical details and where it becomes clear how it extends to the general case. The general argument appears in [L]. Ihavemade every effort to present this article so that it is widely accessible. Also, although characteristic cycles of sheaves is mentioned, I do not assume that the reader is familiar with this notion. 1 Introduction For motivation, let us start with the case of a compact group. Thus we consider a connected compact group K and a maximal torus T ⊂ K . Let kR and tR denote the Lie algebras of K and T respectively, and k, t be their complexified Lie algebras. Let π be a finite-dimensional representation of K , that is π is a group homomorphism K → Aut(V ). -
NOTES on the WEYL CHARACTER FORMULA the Aim of These Notes
NOTES ON THE WEYL CHARACTER FORMULA The aim of these notes is to give a self-contained algebraic proof of the Weyl Character Formula. The necessary background results on modules for sl2(C) and complex semisimple Lie algebras are outlined in the first two sections. Some technical details are left to the exercises at the end; solutions are provided when the exercise is needed for the proof. 1. Representations of sl2(C) Define ! ! ! 1 0 0 1 0 0 h = ; e = ; f = 0 −1 0 0 1 0 2 and note that hh; e; fi = sl2(C). Let u; v be the canonical basis of E = C . Then each Symd E is irreducible with ud spanning the highest-weight space d of weight d and, up to isomorphism, Sym E is the unique irreducible sl2(C)- module with highest weight d. (See Exercises 1.1 and 1.2.) The diagram below shows the actions of h, e and f on the canonical basis of Symd E: loops show the action of h, arrows to the right show the action of e, arrow to the left show the action of f. d−2c−2 d−2c d−2c+2 d−c+1 d−c d−c−1 i • j * • j * • ) c−1 ud−c−1vc+1 c ud−cvc c+1 ud−c+1vc−1 In particular (a) the eigenvalues of h on Symd E are −d; −d + 2; : : : ; d − 2; d and each h-eigenspace is 1-dimensional, (b) if w 2 Symd E and h · w = (d − 2c)w then f · e · w = c(d − c + 1)w. -
Title: Algebraic Group Representations, and Related Topics a Lecture by Len Scott, Mcconnell/Bernard Professor of Mathemtics, the University of Virginia
Title: Algebraic group representations, and related topics a lecture by Len Scott, McConnell/Bernard Professor of Mathemtics, The University of Virginia. Abstract: This lecture will survey the theory of algebraic group representations in positive characteristic, with some attention to its historical development, and its relationship to the theory of finite group representations. Other topics of a Lie-theoretic nature will also be discussed in this context, including at least brief mention of characteristic 0 infinite dimensional Lie algebra representations in both the classical and affine cases, quantum groups, perverse sheaves, and rings of differential operators. Much of the focus will be on irreducible representations, but some attention will be given to other classes of indecomposable representations, and there will be some discussion of homological issues, as time permits. CHAPTER VI Linear Algebraic Groups in the 20th Century The interest in linear algebraic groups was revived in the 1940s by C. Chevalley and E. Kolchin. The most salient features of their contributions are outlined in Chapter VII and VIII. Even though they are put there to suit the broader context, I shall as a rule refer to those chapters, rather than repeat their contents. Some of it will be recalled, however, mainly to round out a narrative which will also take into account, more than there, the work of other authors. §1. Linear algebraic groups in characteristic zero. Replicas 1.1. As we saw in Chapter V, §4, Ludwig Maurer thoroughly analyzed the properties of the Lie algebra of a complex linear algebraic group. This was Cheval ey's starting point. -
Notes on Representations of Finite Groups
NOTES ON REPRESENTATIONS OF FINITE GROUPS AARON LANDESMAN CONTENTS 1. Introduction 3 1.1. Acknowledgements 3 1.2. A first definition 3 1.3. Examples 4 1.4. Characters 7 1.5. Character Tables and strange coincidences 8 2. Basic Properties of Representations 11 2.1. Irreducible representations 12 2.2. Direct sums 14 3. Desiderata and problems 16 3.1. Desiderata 16 3.2. Applications 17 3.3. Dihedral Groups 17 3.4. The Quaternion group 18 3.5. Representations of A4 18 3.6. Representations of S4 19 3.7. Representations of A5 19 3.8. Groups of order p3 20 3.9. Further Challenge exercises 22 4. Complete Reducibility of Complex Representations 24 5. Schur’s Lemma 30 6. Isotypic Decomposition 32 6.1. Proving uniqueness of isotypic decomposition 32 7. Homs and duals and tensors, Oh My! 35 7.1. Homs of representations 35 7.2. Duals of representations 35 7.3. Tensors of representations 36 7.4. Relations among dual, tensor, and hom 38 8. Orthogonality of Characters 41 8.1. Reducing Theorem 8.1 to Proposition 8.6 41 8.2. Projection operators 43 1 2 AARON LANDESMAN 8.3. Proving Proposition 8.6 44 9. Orthogonality of character tables 46 10. The Sum of Squares Formula 48 10.1. The inner product on characters 48 10.2. The Regular Representation 50 11. The number of irreducible representations 52 11.1. Proving characters are independent 53 11.2. Proving characters form a basis for class functions 54 12. Dimensions of Irreps divide the order of the Group 57 Appendix A. -
A Recursive Formula for Characters of Simple Lie Algebras
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 137, 126-144 (1991) A Recursive Formula for Characters of Simple Lie Algebras STEVEN N. KASS* Centre de recherches mathkmatiques, UniversitP de MontrPal C. P. 6128, &cc. “A”, MontrPal, Qutbec, Canada H3C 357 Communicated by Robert Steinberg Received July 20, 1988; accepted July 18, 1989 In 1964, Antoine and Speiser published succinct and elegant formulae for the characters of the irreducible highest weight modules for the Lie algebras A, and B,. (The result for A, may have been known as early as 1957.) These can be derived from a recursive formula for characters valid for all simple complex Kac-Moody Lie algebras for which the Weyl-Kac character formula holds. 0 1991 Academic Press. Inc. 1. INTRODUCTION To avoid the encumbrance of technicalities, we present the results first for simple finite-dimensional Lie algebras over C. We use the following notation, generally following Humphreys [H]. Let L be a finite-dimensional complex simple Lie algebra of rank 1. We denote by H a Cartan subalgebra of L, by ai (1 Q i < I) a choice of simple roots, by Q the integral lattice they generate, and by R, R+, and R- the root system, positive roots, and negative roots with respect to H and the ai, respectively. Let A be the weight lattice for L, and li (1~ i,< I) the fundamental weights corresponding to the choice of simple roots. The set of dominant weights will be denoted A +. -
Notes for Lie Groups & Representations Instructor: Andrei Okounkov
Notes for Lie Groups & Representations Instructor: Andrei Okounkov Henry Liu May 2, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR6344 Lie Groups & Repre- sentations. There are known omissions. Let me know when you find errors or typos. I'm sure there are plenty. 1 Kac{Moody Lie Algebras 1 1.1 Root systems and Weyl groups . 1 1.2 Reflection groups . 2 1.3 Regular polytopes and Coxeter groups . 4 1.4 Kac{Moody Lie algebras . 5 1.5 Examples of Kac{Moody algebras . 7 1.6 Category O . 8 1.7 Gabber{Kac theorem . 10 1.8 Weyl{Kac character formula . 11 1.9 Weyl character formula . 12 1.10 Affine Kac{Moody Lie algebras . 15 2 Equivariant K-theory 18 2.1 Equivariant sheaves . 18 2.2 Equivariant K-theory . 20 3 Geometric representation theory 22 3.1 Borel{Weil . 22 3.2 Localization . 23 3.3 Borel{Weil{Bott . 25 3.4 Hecke algebras . 26 3.5 Convolution . 27 3.6 Difference operators . 31 3.7 Equivariant K-theory of Steinberg variety . 32 3.8 Quantum groups and knots . 33 a Chapter 1 Kac{Moody Lie Algebras Given a semisimple Lie algebra, we can construct an associated root system, and from the root system we can construct a discrete group W generated by reflections (called the Weyl group). 1.1 Root systems and Weyl groups Let g be a semisimple Lie algebra, and h ⊂ g a Cartan subalgebra. Recall that g has a non-degenerate bilinear form (·; ·) which is preserved by the adjoint action, i.e. -
Lie Algebras by Shlomo Sternberg
Lie algebras Shlomo Sternberg April 23, 2004 2 Contents 1 The Campbell Baker Hausdorff Formula 7 1.1 The problem. 7 1.2 The geometric version of the CBH formula. 8 1.3 The Maurer-Cartan equations. 11 1.4 Proof of CBH from Maurer-Cartan. 14 1.5 The differential of the exponential and its inverse. 15 1.6 The averaging method. 16 1.7 The Euler MacLaurin Formula. 18 1.8 The universal enveloping algebra. 19 1.8.1 Tensor product of vector spaces. 20 1.8.2 The tensor product of two algebras. 21 1.8.3 The tensor algebra of a vector space. 21 1.8.4 Construction of the universal enveloping algebra. 22 1.8.5 Extension of a Lie algebra homomorphism to its universal enveloping algebra. 22 1.8.6 Universal enveloping algebra of a direct sum. 22 1.8.7 Bialgebra structure. 23 1.9 The Poincar´e-Birkhoff-Witt Theorem. 24 1.10 Primitives. 28 1.11 Free Lie algebras . 29 1.11.1 Magmas and free magmas on a set . 29 1.11.2 The Free Lie Algebra LX ................... 30 1.11.3 The free associative algebra Ass(X). 31 1.12 Algebraic proof of CBH and explicit formulas. 32 1.12.1 Abstract version of CBH and its algebraic proof. 32 1.12.2 Explicit formula for CBH. 32 2 sl(2) and its Representations. 35 2.1 Low dimensional Lie algebras. 35 2.2 sl(2) and its irreducible representations. 36 2.3 The Casimir element. 39 2.4 sl(2) is simple. -
Weyl Character Formula for U(N)
THE WEYL CHARACTER FORMULA–I PRAMATHANATH SASTRY 1. Introduction This is the first of two lectures on the representations of compact Lie groups. In this lecture we concentrate on the group U(n), and classify all its irreducible representations. The methods give the paradigm and set the template for study- ing representations of a large class of compact Lie groups—a class which includes semi-simple compact groups. The climax is the character formula of Weyl, which classifies all irreducible representations for this class, up to unitary equivalence. The typing was done in a hurry (last night and this morning, to be precise), and there may well be more serious errors than mere typos. Typos of course abound. 2. Fourier Analysis on abelian groups It is well-known, and easy to prove, that a compact ableian Lie group 1 is nec- essarily a torus Tn = S1 × . × S1 (n factors). A character on T = Tn is a Lie T C∗ 2 m1 mn group map χ : → . The maps χm1,... ,mn ((t1,...,tn) 7→ t1 ...tn ) lists n all characters on T as (m1,...,mn) varies over Z . This is a fairly elementary result—indeed, the image of a character χ must be a compact connected subgroup of C∗, forcing χ to take values in S1 ⊂ C∗. From there to seeing χ must equal a χm1,... ,mn is easy (try the case n = 1 !). T has an invariant Borel measure dt = dt1 ... dtn (the product of the “arc length” measures on the various S1 factors), the so called Haar measure on T 3. -
Branching Rules of Classical Lie Groups in Two Ways
Branching Rules of Classical Lie Groups in Two Ways by Lingxiao Li Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Bachelor of Science in Mathematics with Honors at Stanford University June 2018 Thesis advisor: Daniel Bump Contents 1 Introduction 2 2 Branching Rule of Successive Unitary Groups 4 2.1 Weyl Character Formula . .4 2.2 Maximal Torus and Root System of U(n) .....................5 2.3 Statement of U(n) # U(n − 1) Branching Rule . .6 2.4 Schur Polynomials and Pieri’s Formula . .7 2.5 Proof of U(n) # U(n − 1) Branching Rule . .9 3 Branching Rule of Successive Orthogonal Groups 13 3.1 Maximal Tori and Root Systems of SO(2n + 1) and SO(2n) .......... 13 3.2 Branching Rule for SO(2n + 1) # SO(2n) ..................... 14 3.3 Branching Rule for SO(2n) # SO(2n − 1) ..................... 17 4 Branching Rules via Duality 21 4.1 Algebraic Setup . 21 4.2 Representations of Algebras . 22 4.3 Reductivity of Classical Groups . 23 4.4 General Duality Theorem . 25 4.5 Schur-Weyl Duality . 27 4.6 Weyl Algebra Duality . 28 4.7 GL(n; C)-GL(k; C) Duality . 31 4.8 O(n; C)-sp(k; C) Duality . 33 4.9 Seesaw Reciprocity . 36 4.10 Littlewood-Richardson Coefficients . 37 4.11 Stable Branching Rule for O(n; C) × O(n; C) # O(n; C) ............. 39 1 Acknowledgements I would like to express my great gratitude to my honor thesis advisor Daniel Bump for sug- gesting me the interesting problem of branching rules, for unreservedly and patiently sharing his knowledge with me on Lie theory, and for giving me valuable instruction and support in the process of writing this thesis over the recent year. -
Covariant Dirac Operators on Quantum Groups
Covariant Dirac Operators on Quantum Groups Antti J. Harju∗ Abstract We give a construction of a Dirac operator on a quantum group based on any simple Lie alge- bra of classical type. The Dirac operator is an element in the vector space Uq (g) ⊗ clq(g) where the second tensor factor is a q-deformation of the classical Clifford algebra. The tensor space Uq (g) ⊗ clq(g) is given a structure of the adjoint module of the quantum group and the Dirac operator is invariant under this action. The purpose of this approach is to construct equivariant Fredholm modules and K-homology cycles. This work generalizes the operator introduced by Bibikov and Kulish in [1]. MSC: 17B37, 17B10 Keywords: Quantum group; Dirac operator; Clifford algebra 1. The Dirac operator on a simple Lie group G is an element in the noncommutative Weyl algebra U(g) cl(g) where U(g) is the enveloping algebra for the Lie algebra of G. The vector space g generates a Clifford⊗ algebra cl(g) whose structure is determined by the Killing form of g. Since g acts on itself by the adjoint action, U(g) cl(g) is a g-module. The Dirac operator on G spans a one dimensional invariant submodule of U(g)⊗ cl(g) which is of the first order in cl(g) and in U(g). Kostant’s Dirac operator [10] has an additional⊗ cubical term in cl(g) which is constant in U(g). The noncommutative Weyl algebra is given an action on a Hilbert space which is also a g-module. -
3 Representations of Finite Groups: Basic Results
3 Representations of finite groups: basic results Recall that a representation of a group G over a field k is a k-vector space V together with a group homomorphism δ : G GL(V ). As we have explained above, a representation of a group G ! over k is the same thing as a representation of its group algebra k[G]. In this section, we begin a systematic development of representation theory of finite groups. 3.1 Maschke's Theorem Theorem 3.1. (Maschke) Let G be a finite group and k a field whose characteristic does not divide G . Then: j j (i) The algebra k[G] is semisimple. (ii) There is an isomorphism of algebras : k[G] EndV defined by g g , where V ! �i i 7! �i jVi i are the irreducible representations of G. In particular, this is an isomorphism of representations of G (where G acts on both sides by left multiplication). Hence, the regular representation k[G] decomposes into irreducibles as dim(V )V , and one has �i i i G = dim(V )2 : j j i Xi (the “sum of squares formula”). Proof. By Proposition 2.16, (i) implies (ii), and to prove (i), it is sufficient to show that if V is a finite-dimensional representation of G and W V is any subrepresentation, then there exists a → subrepresentation W V such that V = W W as representations. 0 → � 0 Choose any complement Wˆ of W in V . (Thus V = W Wˆ as vector spaces, but not necessarily � as representations.) Let P be the projection along Wˆ onto W , i.e., the operator on V defined by P W = Id and P W^ = 0. -
Lie Algebras
Lie algebras Course Notes Alberto Elduque Departamento de Matem´aticas Universidad de Zaragoza 50009 Zaragoza, Spain ©2005-2021 Alberto Elduque These notes are intended to provide an introduction to the basic theory of finite dimensional Lie algebras over an algebraically closed field of characteristic 0 and their representations. They are aimed at beginning graduate students in either Mathematics or Physics. The basic references that have been used in preparing the notes are the books in the following list. By no means these notes should be considered as an alternative to the reading of these books. N. Jacobson: Lie algebras, Dover, New York 1979. Republication of the 1962 original (Interscience, New York). J.E. Humphreys: Introduction to Lie algebras and Representation Theory, GTM 9, Springer-Verlag, New York 1972. W. Fulton and J. Harris: Representation Theory. A First Course, GTM 129, Springer-Verlag, New York 1991. W.A. De Graaf: Lie algebras: Theory and Algorithms, North Holland Mathemat- ical Library, Elsevier, Amsterdan 2000. Contents 1 A short introduction to Lie groups and Lie algebras 1 § 1. One-parameter groups and the exponential map . 2 § 2. Matrix groups . 5 § 3. The Lie algebra of a matrix group . 7 2 Lie algebras 17 § 1. Theorems of Engel and Lie . 17 § 2. Semisimple Lie algebras . 22 § 3. Representations of sl2(k)........................... 29 § 4. Cartan subalgebras . 31 § 5. Root space decomposition . 34 § 6. Classification of root systems . 38 § 7. Classification of the semisimple Lie algebras . 51 § 8. Exceptional Lie algebras . 55 3 Representations of semisimple Lie algebras 61 § 1. Preliminaries . 61 § 2. Properties of weights and the Weyl group .