Simpira V2: a Family of Efficient Permutations Using the AES Round
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Cryptanalysis.Pdf
EEAlgebraic E Cryptanalysis Gregory V. Bard Algebraic Cryptanalysis Gregory V. Bard Department of Mathematics Fordham University Bronx, NY 10458 USA [email protected] ISBN 978-0-387-88756-2 e-ISBN 978-0-387-88757-9 DOI 10.1007/978-0-387-88757-9 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009929845 © Springer Science+ Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Algebraic Cryptanalysis is the process of breaking codes by solving polynomial systems of equations. In some ways this book began when the author began to ex- plore cryptanalysis as a beginning graduate student, and realized with frustration that no book whatsoever existed on the topic. Since that time, some books have been written about Linear Cryptanalysis or Differential Cryptanalysis (e.g. [211] and [214] cover both), but none on Algebraic Cryptanalysis, which is a rich and growing field. -
On the Efficiency of the Lamport Signature Scheme
Technical Sciences 275 ON THE EFFICIENCY OF THE LAMPORT SIGNATURE SCHEME Daniel ZENTAI Óbuda University, Budapest, Hungary [email protected] ABSTRACT Post-quantum (or quantum-resistant) cryptography refers to a set of cryptographic algorithms that are thought to remain secure even in the world of quantum computers. These algorithms are usually considered to be inefficient because of their big keys, or their running time. However, if quantum computers became a reality, security professionals will not have any other choice, but to use these algorithms. Lamport signature is a hash based one-time digital signature algorithm that is thought to be quantum-resistant. In this paper we will describe some simulation results related to the efficiency of the Lamport signature. KEYWORDS: digital signature, post-quantum cryptography, hash functions 1. Introduction This paper is organized as follows. Although reasonable sized quantum After this introduction, in chapter 2 we computers do not exist yet, post quantum describe some basic concepts and definition cryptography (Bernstein, 2009) became an related to the security of hash functions. important research field recently. Indeed, Also, we describe the Lamport one-time we have to discover the properties of these signature algorithm. In chapter 3 we algorithms before quantum computers expound our simulation results related to become a reality, namely suppose that we the efficiency of the Lamport signature. use the current cryptographic algorithms for The last chapter summarizes our work. x more years, we need y years to change the most widely used algorithms and update 2. Preliminaries our standards, and we need z years to build In this chapter the basic concepts and a quantum-computer. -
Outline One-Time Signatures One-Time Signatures Lamport's
Advanced Security Outline § One-Time Signatures Constructions • Lamport’s signature and Key Management • Improved signature constructions • Merkle-Winternitz Signature § Efficient Authenticators (amortize signature) Class 16 • One-way chains (self-authenticating values) • Chained hashes • Merkle Hash Trees § Applications • Efficient short-lived certificates, S/Key • Untrusted external storage • Stream signatures (Gennaro, Rohatgi) § Zhou & Haas’s key distribution One-Time Signatures One-Time Signatures § Use one -way functions without trapdoor § Challenge: digital signatures expensive § Efficient for signature generation and for generation and verification verification § Caveat: can only use one time § Goal: amortize digital signature § Example: 1-bit one-time signature • P0, P1 are public values (public key) • S0, S1 are private values (private key) S0 P0 S0 S0’ P S1 P1 S1 S1’ Lamport’s One-Time Signature Improved Construction I § Uses 1-bit signature construction to sign multiple bits § Uses 1-bit signature construction to sign multiple bits Sign 0 S0 S0’ S0’’ S0* Private values S0 S0’ S0’’ S0* c0 c0’ c0* P0 P0’ P0’’ P0* … … … Public values P0 P0’ P0’’ P0* p0 p0’ p0* P1 P1’ P1’’ P1* Bit 0 Bit 1 Bit 2 Bit n Bit 0 Bit 1 Bit log(n) Sign 1 S1 S1’ S1’’ S1* Private values Sign message Checksum bits: encode Bit 0 Bit 1 Bit 2 Bit n # of signature bits = 0 1 Improved Construction II Merkle-Winternitz Construction § Intuition: encode sum of checksum chain § Lamport signature has high overhead Signature S0 S1 S2 S3 § Goal: reduce size of public -
A Survey on Post-Quantum Cryptography for Constrained Devices
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 11 (2019) pp. 2608-2615 © Research India Publications. http://www.ripublication.com A Survey on Post-Quantum Cryptography for Constrained Devices Kumar Sekhar Roy and Hemanta Kumar Kalita Abstract Quantum Computer” [1]. Shor’s algorithm can solve integer The rise of Quantum computers in the recent years have given factorization problem as well as discrete logarithm problem a major setback to classical and widely used cryptography used by RSA as well as ECC respectively in polynomial time schemes such as RSA(Rivest-Shamir-Adleman) Algorithm using a sufficiently large Quantum Computer. Thus making the and ECC (Elliptic Curve Cryptography). RSA and ECC use of cryptosystems based on integer factorization problem as depends on integer factorization problem and discrete well as discrete logarithm problem obsolete. This current logarithm problem respectively, which can be easily solved by advances has raised a genuine need for development of Quantum Computers of sufficiently large size running the cryptosystems which could serve as viable replacement for infamous Shor’s Algorithm. Therefore cryptography schemes traditionally used cryptosystems which are vulnerable to which are difficult to solve in both traditional as well as quantum computer based attacks. Since the arrival of IoT, the Quantum Computers need to be evaluated. In our paper we Cyber security scenario has entirely shifted towards security provide a rigorous survey on Post-Quantum Cryptography schemes which are lightweight in terms of computational schemes and emphasize on their applicability to provide complexity, power consumption, memory consumption etc. security in constrained devices. We provide a detailed insight This schemes also need to be secure against all known attacks. -
The Substitution Cipher Chaining Mode
THE SUBSTITUTION CIPHER CHAINING MODE Mohamed Abo El-Fotouh and Klaus Diepold Institute for Data Processing (LDV), Technische Universitat¨ Munchen¨ (TUM), 80333 Munich, Germany Keywords: Modes of operation, SCC, disk encryption, AES. Abstract: In this paper, we present a new tweakable narrow-block mode of operation, the Substitution Cipher Chaining mode (SCC), that can be efficiently deployed in disk encryption applications. SCC is characterized by its high throughout compared to the current solutions and it can be parallelized. We used this mode to modify Windows Vista’s disk encryption algorithm, to offer some parallelism in its original implementation and to improve its diffusion properties. 1 INTRODUCTION 2001). Bear, Lion and Beast are considered to be slow, as they process the data through multiple passes. And Mercy was broken in (Fluhrer, 2002). The other In todays computing environment, there are many method is to let a block cipher like the Advanced en- threats to the confidentiality of information stored on cryption standard AES (Daemen and Rijmen, 1998) end user devices, such as personal computers, con- (with 16-bytes as a block size) to process the data sumer devices (e.g. PDA), and removable storage me- within a mode of operation. These modes of operation dia like (e.g., USB or external hard drive). A common can be divided into two main classes the narrow-block threat against end user devices is device loss or theft, and wide-block modes. The narrow-block modes op- that can lead to identity theft and other frauds. Some- erate on relatively small portions of data (typically one with physical access to a device has many op- 16-bytes when AES is used), while the wide-block tions for attempting to view or copy the information modes encrypt or decrypt a whole sector (typically stored on that device. -
The QARMA Block Cipher Family
The QARMA Block Cipher Family Almost MDS Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes Roberto Avanzi Qualcomm Product Security, Munich, Germany [email protected], [email protected] Abstract. This paper introduces QARMA, a new family of lightweight tweakable block ciphers targeted at applications such as memory encryption, the generation of very short tags for hardware-assisted prevention of software exploitation, and the con- struction of keyed hash functions. QARMA is inspired by reflection ciphers such as PRINCE, to which it adds a tweaking input, and MANTIS. However, QARMA differs from previous reflector constructions in that it is a three-round Even-Mansour scheme instead of a FX-construction, and its middle permutation is non-involutory and keyed. We introduce and analyse a family of Almost MDS matrices defined over a ring with zero divisors that allows us to encode rotations in its operation while maintaining the minimal latency associated to {0, 1}-matrices. The purpose of all these design choices is to harden the cipher against various classes of attacks. We also describe new S-Box search heuristics aimed at minimising the critical path. QARMA exists in 64- and 128-bit block sizes, where block and tweak size are equal, and keys are twice as long as the blocks. We argue that QARMA provides sufficient security margins within the constraints de- termined by the mentioned applications, while still achieving best-in-class latency. Implementation results on a state-of-the art manufacturing process are reported. -
Applications of SKREM-Like Symmetric Key Ciphers
Applications of SKREM-like symmetric key ciphers Mircea-Adrian Digulescu1;2 February 2021 1Individual Researcher, Worldwide 2Formerly: Department of Computer Science, Faculty of Mathematics and Computer Science, University of Bucharest, Romania [email protected], [email protected], [email protected] Abstract In a prior paper we introduced a new symmetric key encryption scheme called Short Key Random Encryption Machine (SKREM), for which we claimed excellent security guarantees. In this paper we present and briey discuss some of its applications outside conventional data encryption. These are Secure Coin Flipping, Cryptographic Hashing, Zero-Leaked-Knowledge Authentication and Autho- rization and a Digital Signature scheme which can be employed on a block-chain. We also briey recap SKREM-like ciphers and the assumptions on which their security are based. The above appli- cations are novel because they do not involve public key cryptography. Furthermore, the security of SKREM-like ciphers is not based on hardness of some algebraic operations, thus not opening them up to specic quantum computing attacks. Keywords: Symmetric Key Encryption, Provable Security, One Time Pad, Zero Knowledge, Cryptographic Commit Protocol, Secure Coin Flipping, Authentication, Authorization, Cryptographic Hash, Digital Signature, Chaos Machine 1 Introduction So far, most encryption schemes able to serve Secure Coin Flipping, Zero-Knowledge Authentication and Digital Signatures, have relied on public key cryptography, which in turn relies on the hardness of prime factorization or some algebraic operation in general. Prime Factorization, in turn, has been shown to be vulnerable to attacks by a quantum computer (see [1]). In [2] we introduced a novel symmetric key encryption scheme, which does not rely on hardness of algebraic operations for its security guarantees. -
Speeding-Up Verification of Digital Signatures Abdul Rahman Taleb, Damien Vergnaud
Speeding-Up Verification of Digital Signatures Abdul Rahman Taleb, Damien Vergnaud To cite this version: Abdul Rahman Taleb, Damien Vergnaud. Speeding-Up Verification of Digital Signatures. Journal of Computer and System Sciences, Elsevier, 2021, 116, pp.22-39. 10.1016/j.jcss.2020.08.005. hal- 02934136 HAL Id: hal-02934136 https://hal.archives-ouvertes.fr/hal-02934136 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Speeding-Up Verification of Digital Signatures Abdul Rahman Taleb1, Damien Vergnaud2, Abstract In 2003, Fischlin introduced the concept of progressive verification in cryptog- raphy to relate the error probability of a cryptographic verification procedure to its running time. It ensures that the verifier confidence in the validity of a verification procedure grows with the work it invests in the computation. Le, Kelkar and Kate recently revisited this approach for digital signatures and pro- posed a similar framework under the name of flexible signatures. We propose efficient probabilistic verification procedures for popular signature schemes in which the error probability of a verifier decreases exponentially with the ver- ifier running time. We propose theoretical schemes for the RSA and ECDSA signatures based on some elegant idea proposed by Bernstein in 2000 and some additional tricks. -
DIVINE MERCY SUNDAY 2 Catholic Times April 23, 2017
CATHOLIC APRIL 23, 2017 SECOND WEEK OF EASTER VOLUME 66:30 DIOCESE OF COLUMBUS A journal of Catholic life in Ohio DIVINE MERCY SUNDAY 2 Catholic Times April 23, 2017 The Editor’s Notebook Honoring Our Blessed Mother’s Fatima Appearances An Issue of Trust By David Garick, Editor A few years ago, I was working for But trust is es- a state government agency, and the sential to our senior staff got together for a daylong souls. The key session of team-building. It took place to trust is faith, at one of those wilderness camp places and that is not that specialize in putting ordinary of- something you go out and get on your fice workers into primitive outdoor own. St. Paul says “Faith is the real- challenges that can be solved only by ization of things hoped for and evi- teamwork. dence of things not seen” (Hebrews One of the first and simplest chal- 11:1). Faith is a gift of the Holy Spirit lenges was to stand with eyes closed and through this gift, this faith, we can and arms folded across one’s chest. trust in the one person who will catch A co-worker was positioned behind us, no matter how hard or how often you and you were to allow yourself we fall. That is Our Lord Jesus Christ. to fall backwards, relying on the co- This week’s Catholic Times looks at worker to catch you. The idea is to devotions that have grown up around develop trust. It sounds simple. But Divine Mercy Sunday. -
Encryption Block Cipher
10/29/2007 Encryption Encryption Block Cipher Dr.Talal Alkharobi 2 Block Cipher A symmetric key cipher which operates on fixed-length groups of bits, termed blocks, with an unvarying transformation. When encrypting, a block cipher take n-bit block of plaintext as input, and output a corresponding n-bit block of ciphertext. The exact transformation is controlled using a secret key. Decryption is similar: the decryption algorithm takes n-bit block of ciphertext together with the secret key, and yields the original n-bit block of plaintext. Mode of operation is used to encrypt messages longer than the block size. 1 Dr.Talal Alkharobi 10/29/2007 Encryption 3 Encryption 4 Decryption 2 Dr.Talal Alkharobi 10/29/2007 Encryption 5 Block Cipher Consists of two algorithms, encryption, E, and decryption, D. Both require two inputs: n-bits block of data and key of size k bits, The output is an n-bit block. Decryption is the inverse function of encryption: D(E(B,K),K) = B For each key K, E is a permutation over the set of input blocks. n Each key K selects one permutation from the possible set of 2 !. 6 Block Cipher The block size, n, is typically 64 or 128 bits, although some ciphers have a variable block size. 64 bits was the most common length until the mid-1990s, when new designs began to switch to 128-bit. Padding scheme is used to allow plaintexts of arbitrary lengths to be encrypted. Typical key sizes (k) include 40, 56, 64, 80, 128, 192 and 256 bits. -
Cryptology: an Historical Introduction DRAFT
Cryptology: An Historical Introduction DRAFT Jim Sauerberg February 5, 2013 2 Copyright 2013 All rights reserved Jim Sauerberg Saint Mary's College Contents List of Figures 8 1 Caesar Ciphers 9 1.1 Saint Cyr Slide . 12 1.2 Running Down the Alphabet . 14 1.3 Frequency Analysis . 15 1.4 Linquist's Method . 20 1.5 Summary . 22 1.6 Topics and Techniques . 22 1.7 Exercises . 23 2 Cryptologic Terms 29 3 The Introduction of Numbers 31 3.1 The Remainder Operator . 33 3.2 Modular Arithmetic . 38 3.3 Decimation Ciphers . 40 3.4 Deciphering Decimation Ciphers . 42 3.5 Multiplication vs. Addition . 44 3.6 Koblitz's Kid-RSA and Public Key Codes . 44 3.7 Summary . 48 3.8 Topics and Techniques . 48 3.9 Exercises . 49 4 The Euclidean Algorithm 55 4.1 Linear Ciphers . 55 4.2 GCD's and the Euclidean Algorithm . 56 4.3 Multiplicative Inverses . 59 4.4 Deciphering Decimation and Linear Ciphers . 63 4.5 Breaking Decimation and Linear Ciphers . 65 4.6 Summary . 67 4.7 Topics and Techniques . 67 4.8 Exercises . 68 3 4 CONTENTS 5 Monoalphabetic Ciphers 71 5.1 Keyword Ciphers . 72 5.2 Keyword Mixed Ciphers . 73 5.3 Keyword Transposed Ciphers . 74 5.4 Interrupted Keyword Ciphers . 75 5.5 Frequency Counts and Exhaustion . 76 5.6 Basic Letter Characteristics . 77 5.7 Aristocrats . 78 5.8 Summary . 80 5.9 Topics and Techniques . 81 5.10 Exercises . 81 6 Decrypting Monoalphabetic Ciphers 89 6.1 Letter Interactions . 90 6.2 Decrypting Monoalphabetic Ciphers . -
Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World∗
Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World∗ Dan Boneh Mark Zhandry Stanford University fdabo,[email protected] Abstract We initiate the study of quantum-secure digital signatures and quantum chosen ciphertext security. In the case of signatures, we enhance the standard chosen message query model by allowing the adversary to issue quantum chosen message queries: given a superposition of messages, the adversary receives a superposition of signatures on those messages. Similarly, for encryption, we allow the adversary to issue quantum chosen ciphertext queries: given a superposition of ciphertexts, the adversary receives a superposition of their decryptions. These adversaries model a natural ubiquitous quantum computing environment where end-users sign messages and decrypt ciphertexts on a personal quantum computer. We construct classical systems that remain secure when exposed to such quantum queries. For signatures, we construct two compilers that convert classically secure signatures into signatures secure in the quantum setting and apply these compilers to existing post-quantum signatures. We also show that standard constructions such as Lamport one-time signatures and Merkle signatures remain secure under quantum chosen message attacks, thus giving signatures whose quantum security is based on generic assumptions. For encryption, we define security under quantum chosen ciphertext attacks and present both public-key and symmetric-key constructions. Keywords: Quantum computing, signatures, encryption, quantum security 1 Introduction Recent progress in building quantum computers [IBM12] gives hope for their eventual feasibility. Consequently, there is a growing need for quantum-secure cryptosystems, namely classical systems that remain secure against quantum computers. Post-quantum cryptography generally studies the settings where the adversary is armed with a quantum computer, but users only have classical machines.