Faster and Shorter Password-Authenticated Key Exchange
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Efficiency of the Lamport Signature Scheme
Technical Sciences 275 ON THE EFFICIENCY OF THE LAMPORT SIGNATURE SCHEME Daniel ZENTAI Óbuda University, Budapest, Hungary [email protected] ABSTRACT Post-quantum (or quantum-resistant) cryptography refers to a set of cryptographic algorithms that are thought to remain secure even in the world of quantum computers. These algorithms are usually considered to be inefficient because of their big keys, or their running time. However, if quantum computers became a reality, security professionals will not have any other choice, but to use these algorithms. Lamport signature is a hash based one-time digital signature algorithm that is thought to be quantum-resistant. In this paper we will describe some simulation results related to the efficiency of the Lamport signature. KEYWORDS: digital signature, post-quantum cryptography, hash functions 1. Introduction This paper is organized as follows. Although reasonable sized quantum After this introduction, in chapter 2 we computers do not exist yet, post quantum describe some basic concepts and definition cryptography (Bernstein, 2009) became an related to the security of hash functions. important research field recently. Indeed, Also, we describe the Lamport one-time we have to discover the properties of these signature algorithm. In chapter 3 we algorithms before quantum computers expound our simulation results related to become a reality, namely suppose that we the efficiency of the Lamport signature. use the current cryptographic algorithms for The last chapter summarizes our work. x more years, we need y years to change the most widely used algorithms and update 2. Preliminaries our standards, and we need z years to build In this chapter the basic concepts and a quantum-computer. -
Outline One-Time Signatures One-Time Signatures Lamport's
Advanced Security Outline § One-Time Signatures Constructions • Lamport’s signature and Key Management • Improved signature constructions • Merkle-Winternitz Signature § Efficient Authenticators (amortize signature) Class 16 • One-way chains (self-authenticating values) • Chained hashes • Merkle Hash Trees § Applications • Efficient short-lived certificates, S/Key • Untrusted external storage • Stream signatures (Gennaro, Rohatgi) § Zhou & Haas’s key distribution One-Time Signatures One-Time Signatures § Use one -way functions without trapdoor § Challenge: digital signatures expensive § Efficient for signature generation and for generation and verification verification § Caveat: can only use one time § Goal: amortize digital signature § Example: 1-bit one-time signature • P0, P1 are public values (public key) • S0, S1 are private values (private key) S0 P0 S0 S0’ P S1 P1 S1 S1’ Lamport’s One-Time Signature Improved Construction I § Uses 1-bit signature construction to sign multiple bits § Uses 1-bit signature construction to sign multiple bits Sign 0 S0 S0’ S0’’ S0* Private values S0 S0’ S0’’ S0* c0 c0’ c0* P0 P0’ P0’’ P0* … … … Public values P0 P0’ P0’’ P0* p0 p0’ p0* P1 P1’ P1’’ P1* Bit 0 Bit 1 Bit 2 Bit n Bit 0 Bit 1 Bit log(n) Sign 1 S1 S1’ S1’’ S1* Private values Sign message Checksum bits: encode Bit 0 Bit 1 Bit 2 Bit n # of signature bits = 0 1 Improved Construction II Merkle-Winternitz Construction § Intuition: encode sum of checksum chain § Lamport signature has high overhead Signature S0 S1 S2 S3 § Goal: reduce size of public -
A Survey on Post-Quantum Cryptography for Constrained Devices
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 11 (2019) pp. 2608-2615 © Research India Publications. http://www.ripublication.com A Survey on Post-Quantum Cryptography for Constrained Devices Kumar Sekhar Roy and Hemanta Kumar Kalita Abstract Quantum Computer” [1]. Shor’s algorithm can solve integer The rise of Quantum computers in the recent years have given factorization problem as well as discrete logarithm problem a major setback to classical and widely used cryptography used by RSA as well as ECC respectively in polynomial time schemes such as RSA(Rivest-Shamir-Adleman) Algorithm using a sufficiently large Quantum Computer. Thus making the and ECC (Elliptic Curve Cryptography). RSA and ECC use of cryptosystems based on integer factorization problem as depends on integer factorization problem and discrete well as discrete logarithm problem obsolete. This current logarithm problem respectively, which can be easily solved by advances has raised a genuine need for development of Quantum Computers of sufficiently large size running the cryptosystems which could serve as viable replacement for infamous Shor’s Algorithm. Therefore cryptography schemes traditionally used cryptosystems which are vulnerable to which are difficult to solve in both traditional as well as quantum computer based attacks. Since the arrival of IoT, the Quantum Computers need to be evaluated. In our paper we Cyber security scenario has entirely shifted towards security provide a rigorous survey on Post-Quantum Cryptography schemes which are lightweight in terms of computational schemes and emphasize on their applicability to provide complexity, power consumption, memory consumption etc. security in constrained devices. We provide a detailed insight This schemes also need to be secure against all known attacks. -
The Twin Diffie-Hellman Problem and Applications
The Twin Diffie-Hellman Problem and Applications David Cash1 Eike Kiltz2 Victor Shoup3 February 10, 2009 Abstract We propose a new computational problem called the twin Diffie-Hellman problem. This problem is closely related to the usual (computational) Diffie-Hellman problem and can be used in many of the same cryptographic constructions that are based on the Diffie-Hellman problem. Moreover, the twin Diffie-Hellman problem is at least as hard as the ordinary Diffie-Hellman problem. However, we are able to show that the twin Diffie-Hellman problem remains hard, even in the presence of a decision oracle that recognizes solutions to the problem — this is a feature not enjoyed by the Diffie-Hellman problem in general. Specifically, we show how to build a certain “trapdoor test” that allows us to effectively answer decision oracle queries for the twin Diffie-Hellman problem without knowing any of the corresponding discrete logarithms. Our new techniques have many applications. As one such application, we present a new variant of ElGamal encryption with very short ciphertexts, and with a very simple and tight security proof, in the random oracle model, under the assumption that the ordinary Diffie-Hellman problem is hard. We present several other applications as well, including: a new variant of Diffie and Hellman’s non-interactive key exchange protocol; a new variant of Cramer-Shoup encryption, with a very simple proof in the standard model; a new variant of Boneh-Franklin identity-based encryption, with very short ciphertexts; a more robust version of a password-authenticated key exchange protocol of Abdalla and Pointcheval. -
2.4 the Random Oracle Model
國 立 交 通 大 學 資訊工程學系 博 士 論 文 可證明安全的公開金鑰密碼系統與通行碼驗證金鑰 交換 Provably Secure Public Key Cryptosystems and Password Authenticated Key Exchange Protocols 研 究 生:張庭毅 指導教授:楊維邦 教授 黃明祥 教授 中 華 民 國 九 十 五 年 十 二 月 可證明安全的公開金鑰密碼系統與通行碼驗證金鑰交換 Provably Secure Public Key Cryptosystems and Password Authenticated Key Exchange Protocols 研 究 生:張庭毅 Student:Ting-Yi Chang 指導教授:楊維邦 博士 Advisor:Dr. Wei-Pang Yang 黃明祥 博士 Dr. Min-Shiang Hwang 國 立 交 通 大 學 資 訊 工 程 學 系 博 士 論 文 A Dissertation Submitted to Department of Computer Science College of Computer Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science December 2006 Hsinchu, Taiwan, Republic of China 中華民國九十五年十二月 ¡¢£¤¥¦§¨© ª« ¬ Æ ¯ « ¡¨ © ¡¢£¤¥ ¦§¨©¢ª«¬ Æ ¯ Æ Æ Æ ¡ ElGamal ¦§ °±¥ ²³´ ·§±¥¸¹º»¼½¶¾¿§¾¿¸¹³ °µ¶ p ° p§¾¿ ElGamal Hwang §°À¡Á²±¥·§ÂÃÄŨ© ElGamal-like È ÆÇ§È¤ÉÀÊËÌ¡ÍÎϧElGamal-like IND-CPA ¡¦ÃÅ Á²±¥·ÁÃÄŧ¨©§Æ ° ½¡ÐÑÒµ§ IND-CPA ElGamal IND- ±È¤±¥ÓÔÕ§ CCA2§ ElGamal-extended ¡Öר¬Ù¶ÚÀÛܰ§¨©ÝÞ°ÛÜß§ ¡¦§ËÌ IND-CPAPAIR ElGamal-extended Ô°°ÃÄÅ ¬§DZàáâ ãäåæçèé°¡êÛܰëìíîï§åÉ i ïíîÛܰ먩ǰ § ðñòóô ¨©õö÷°§Àäå øùרú§ûüÀÆý°þÿì° ÛÜµÌ °Ûܱ¡ Bellare-Pointcheval-Rogaway ¯À°úÐÑÒ·§¨© ° Diffie-Hellman õ°Ý§¡¦§ ò°¥§§±¥§Diffie- Hellman ¯§¥§§Èç§§ Èç§§ô§§ç±Ûܧ §ÐÑÒ ii Provably Secure Public Key Cryptosystems and Password Authenticated Key Exchange Protocols Student: Ting-Yi Chang Advisor: Dr. Wei-Pang Yang Dr. Min-Shiang Hwang Institute of Computer Science and Engineering National Chiao Tung University ABSTRACT In this thesis, we focus on two topics: public key cryptosystems and pass- word authenticated key exchange protocols. -
Multi-Server Authentication Key Exchange Approach in Bigdata Environment
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072 MULTI-SERVER AUTHENTICATION KEY EXCHANGE APPROACH IN BIGDATA ENVIRONMENT Miss. Kiran More1, Prof. Jyoti Raghatwan2 1Kiran More, PG Student. Dept. of Computer Engg. RMD Sinhgad school of Engineering Warje, Pune 2Prof. Jyoti Raghatwan, Dept. of Computer Engg. RMD Sinhgad school of Engineering Warje, Pune ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The key establishment difficulty is the maximum Over-all Equivalent Files System. Which are usually required central issue and we learn the trouble of key organization for for advanced scientific or data exhaustive applications such secure many to many communications for past several years. as digital animation studios, computational fluid dynamics, The trouble is stimulated by the broadcast of huge level and semiconductor manufacturing. detached file organizations behind similar admission to In these milieus, hundreds or thousands of file various storage space tactics. Our chore focal ideas on the structure clients bit data and engender very much high current Internet commonplace for such folder systems that is summative I/O load on the file coordination supporting Parallel Network Folder System [pNFS], which generates petabytes or terabytes scale storage capacities. Liberated of employment of Kerberos to establish up similar session keys the enlargement of the knot and high-performance flanked by customers and storing strategy. Our evaluation of computing, the arrival of clouds and the MapReduce the available Kerberos bottommost procedure validates that it program writing model has resulted in file system such as has a numeral of borders: (a) a metadata attendant make the Hadoop Distributed File System (HDFS). -
Authentication and Key Distribution in Computer Networks and Distributed Systems
13 Authentication and key distribution in computer networks and distributed systems Rolf Oppliger University of Berne Institute for Computer Science and Applied Mathematics {JAM) Neubruckstrasse 10, CH-3012 Bern Phone +41 31 631 89 51, Fax +41 31 631 39 65, [email protected] Abstract Authentication and key distribution systems are used in computer networks and dis tributed systems to provide security services at the application layer. There are several authentication and key distribution systems currently available, and this paper focuses on Kerberos (OSF DCE), NetSP, SPX, TESS and SESAME. The systems are outlined and reviewed with special regard to the security services they offer, the cryptographic techniques they use, their conformance to international standards, and their availability and exportability. Keywords Authentication, key distribution, Kerberos, NetSP, SPX, TESS, SESAME 1 INTRODUCTION Authentication and key distribution systems are used in computer networks and dis tributed systems to provide security services at the application layer. There are several authentication and key distribution systems currently available, and this paper focuses on Kerberos (OSF DCE), NetSP, SPX, TESS and SESAME. The systems are outlined and reviewed with special regard to the security services they offer, the cryptographic techniques they use, their conformance to international standards, and their availability and exportability. It is assumed that the reader of this paper is familiar with the funda mentals of cryptography, and the use of cryptographic techniques in computer networks and distributed systems (Oppliger, 1992 and Schneier, 1994). The following notation is used in this paper: • Capital letters are used to refer to principals (users, clients and servers). -
Strong Password-Based Authentication in TLS Using the Three-Party Group Diffie–Hellman Protocol
284 Int. J. Security and Networks, Vol. 2, Nos. 3/4, 2007 Strong password-based authentication in TLS using the three-party group Diffie–Hellman protocol Michel Abdalla* École normale supérieure – CNRS, LIENS, Paris, France E-mail: [email protected] *Corresponding author Emmanuel Bresson Department of Cryptology, CELAR Technology Center, Bruz, France E-mail: [email protected] Olivier Chevassut Lawrence Berkeley National Laboratory, Berkeley, CA, USA E-mail: [email protected] Bodo Möller Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany E-mail: [email protected] David Pointcheval École normale supérieure – CNRS, LIENS, Paris, France E-mail: [email protected] Abstract: The internet has evolved into a very hostile ecosystem where ‘phishing’ attacks are common practice. This paper shows that the three-party group Diffie-Hellman key exchange can help protect against these attacks. We have developed password-based ciphersuites for the Transport Layer Security (TLS) protocol that are not only provably secure but also believed to be free from patent and licensing restrictions based on an analysis of relevant patents in the area. Keywords: password authentication; group Diffie–Hellman key exchange; transport layer security; TLS. Reference to this paper should be made as follows: Abdalla, M., Bresson, E., Chevassut, O., Möller, B. and Pointcheval, D. (2007) ‘Strong password-based authentication in TLS using the three-party group Diffie-Hellman protocol’, Int. J. Security and Networks, Vol. 2, Nos. 3/4, pp.284–296. Biographical notes: Michel Abdalla is currently a Researcher with the Centre National de la Recherche Scientifique (CNRS), France and a Member of the Cryptography Team at the Ecole Normale Supérieure (ENS), France. -
Applications of SKREM-Like Symmetric Key Ciphers
Applications of SKREM-like symmetric key ciphers Mircea-Adrian Digulescu1;2 February 2021 1Individual Researcher, Worldwide 2Formerly: Department of Computer Science, Faculty of Mathematics and Computer Science, University of Bucharest, Romania [email protected], [email protected], [email protected] Abstract In a prior paper we introduced a new symmetric key encryption scheme called Short Key Random Encryption Machine (SKREM), for which we claimed excellent security guarantees. In this paper we present and briey discuss some of its applications outside conventional data encryption. These are Secure Coin Flipping, Cryptographic Hashing, Zero-Leaked-Knowledge Authentication and Autho- rization and a Digital Signature scheme which can be employed on a block-chain. We also briey recap SKREM-like ciphers and the assumptions on which their security are based. The above appli- cations are novel because they do not involve public key cryptography. Furthermore, the security of SKREM-like ciphers is not based on hardness of some algebraic operations, thus not opening them up to specic quantum computing attacks. Keywords: Symmetric Key Encryption, Provable Security, One Time Pad, Zero Knowledge, Cryptographic Commit Protocol, Secure Coin Flipping, Authentication, Authorization, Cryptographic Hash, Digital Signature, Chaos Machine 1 Introduction So far, most encryption schemes able to serve Secure Coin Flipping, Zero-Knowledge Authentication and Digital Signatures, have relied on public key cryptography, which in turn relies on the hardness of prime factorization or some algebraic operation in general. Prime Factorization, in turn, has been shown to be vulnerable to attacks by a quantum computer (see [1]). In [2] we introduced a novel symmetric key encryption scheme, which does not rely on hardness of algebraic operations for its security guarantees. -
Speeding-Up Verification of Digital Signatures Abdul Rahman Taleb, Damien Vergnaud
Speeding-Up Verification of Digital Signatures Abdul Rahman Taleb, Damien Vergnaud To cite this version: Abdul Rahman Taleb, Damien Vergnaud. Speeding-Up Verification of Digital Signatures. Journal of Computer and System Sciences, Elsevier, 2021, 116, pp.22-39. 10.1016/j.jcss.2020.08.005. hal- 02934136 HAL Id: hal-02934136 https://hal.archives-ouvertes.fr/hal-02934136 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Speeding-Up Verification of Digital Signatures Abdul Rahman Taleb1, Damien Vergnaud2, Abstract In 2003, Fischlin introduced the concept of progressive verification in cryptog- raphy to relate the error probability of a cryptographic verification procedure to its running time. It ensures that the verifier confidence in the validity of a verification procedure grows with the work it invests in the computation. Le, Kelkar and Kate recently revisited this approach for digital signatures and pro- posed a similar framework under the name of flexible signatures. We propose efficient probabilistic verification procedures for popular signature schemes in which the error probability of a verifier decreases exponentially with the ver- ifier running time. We propose theoretical schemes for the RSA and ECDSA signatures based on some elegant idea proposed by Bernstein in 2000 and some additional tricks. -
Fast and Secure Generating and Exchanging a Symmetric Key for TVWS Protocol
International Journal of Computer Science and Telecommunications [Volume 9, Issue 3, May 2018] 15 Fast and Secure Generating and Exchanging a Symmetric Key for TVWS Protocol ISSN 2047-3338 Mubark M. A. Elmubark Department of MIS Blue Nile University, Sudan [email protected] Abstract– In network security, symmetric key encryption security key. So many security protocols can be used in methods are commonly used in order to generate and exchange TVWS with pros and cons. a secret key between the sender and the receiver. The main This paper concentrated on security issues in spectrum drawbacks of this method are that, the attackers might access database access and studies these protocols and proposed new the transmitted data and use it to obtain the key and even methods for key generation and exchange. generate new keys. Also, the process of generating the key is inefficient and time consuming. In this paper a new key PKMv1: WiMAX security, as specified by IEEE 802.16 generation and exchange protocol is proposed to overcome the standard [2] is provided by a security sublayer resided in the aforementioned problems in the conventional symmetric key MAC layer. A protocol called PKM has been adopted in the encryption methods. In the proposed protocol, the results show security sublayer of WiMAX to provide authorization, that the protocol is saved. authentication and keys exchange and distribution between Index Terms– Security, Key Generation and Key Exchange Base Stations (BSs) and Subscriber Stations (SSs). The standard has approved two versions of PKM protocol. PKMv1 which is approved in IEEE 802.16-2004 standards I. -
Distribution Scheme for Fog Networks Nikkhah Bahrami, P, Javadi, HHS, Dargahi, T, Dehghantanha, a and Choo, KKR
A hierarchical key pre-distribution scheme for fog networks Nikkhah Bahrami, P, Javadi, HHS, Dargahi, T, Dehghantanha, A and Choo, KKR http://dx.doi.org/10.1002/cpe.4776 Title A hierarchical key pre-distribution scheme for fog networks Authors Nikkhah Bahrami, P, Javadi, HHS, Dargahi, T, Dehghantanha, A and Choo, KKR Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/47188/ Published Date 2019 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. ReceivED -; ReVISED -; Accepted 31 MaY 2018 DOI: xxx/XXXX SPECIAL ISSUE PAPER A HierARCHICAL KEY Pre-Distribution Scheme FOR FOG Networks POONEH Nikkhah BahrAMI1 | Hamid H.S.JaVADI2 | TOOSKA Dargahi3 | Ali Dehghantanha4 | Kim-KWANG RaYMOND Choo5 1Department OF Computer Science, TEHRAN UnivERSITY, Kish Campus, IrAN Summary 2Department OF Computer Science, Shahed UnivERSITY, TEHRan, IrAN Security IN FOG COMPUTING IS multi-faceted, AND ONE PARTICULAR CHALLENGE IS ESTABLISHING A SECURE 3 School OF Computing, Science AND Engineering, COMMUNICATION CHANNEL BETWEEN FOG NODES AND END DEvices. This EMPHASIZES THE IMPORTANCE UnivERSITY OF Salford, Manchester, UK 4Department OF Computer Science, UnivERSITY OF DESIGNING EFfiCIENT AND SECRET KEY DISTRIBUTION SCHEME TO FACILITATE FOG NODES AND END DEVICES OF Sheffield, Sheffield, UK TO ESTABLISH SECURE COMMUNICATION channels.