Contents Table of Figures
Total Page:16
File Type:pdf, Size:1020Kb
Contents Table of Figures ....................................................................................................................................... 2 Introduction ............................................................................................................................................ 3 Why hydrogen? ................................................................................................................................... 3 Why bimetallic catalyst? ..................................................................................................................... 3 Steam reforming ..................................................................................................................................... 4 Overview ............................................................................................................................................. 4 Steam reforming ................................................................................................................................. 4 Steam Methane Reforming: ............................................................................................................ 5 Catalysts Used in the Methane Steam Reforming .......................................................................... 6 Noble metals catalysts .................................................................................................................... 6 Ni-based catalyst ............................................................................................................................. 7 Strategy development on catalyst design ......................................................................................... 10 Coke formation ............................................................................................................................. 11 Preparation method ...................................................................................................................... 16 Activity and Sintering .................................................................................................................... 17 Sulfur poisoning ............................................................................................................................ 18 In summary ................................................................................................................................... 19 APR ........................................................................................................................................................ 20 Process overview .............................................................................................................................. 20 Reactions ....................................................................................................................................... 20 Process parameters....................................................................................................................... 20 Feeds ............................................................................................................................................. 21 Catalyst in APR .................................................................................................................................. 21 Noble metal catalysts .................................................................................................................... 21 Non-noble metal catalysts ............................................................................................................ 22 Strategy development on catalyst design ..................................................................................... 24 Water electrolysis ................................................................................................................................. 28 Water electrolysis technologies ........................................................................................................ 28 Alkaline exchange membrane water electrolysis (AEMWEs) ....................................................... 28 Metallic electrocatalyst for oxygen evolution reaction (OER) ...................................................... 30 Contributor ........................................................................................................................................... 35 Table of Figures Figure 1: Simplified flow sheet of industrial-scale steam reforming of hydrocarbons [10] ................... 5 Figure 2: TPR patterns of the series 800 (xPt(NiAl)y)z catalysts. The catalysts contained 2 different amounts (%wt) of Pt (x=0.01 and 0.3), and were calcined before Pt impregnation at y = 800oC, and at different temperatures after Pt impregnation (z= 300, 450 and 600oC [23] .......................................... 9 Figure 3: Temperature-programmed reduction profiles of Ni and noble metal-modified Ni catalysts supported on a-Al2O3 [22]. .................................................................................................................... 10 Figure 4: Relationship between catalysts' challenges [24] ................................................................... 10 Figure 5: The proposed mechanism of steam reforming [27] .............................................................. 11 Figure 6: Carbon whisker. The nickel particles have a diameter of 40nm[26] ..................................... 12 Figure 7: Conversion of n-butane as a function of time during steam reforming in a 3% n-butane-7% hydrogen-3%water in helium mixture. The dashed curve shows he n-butane conversion for the Ni and the solid curve is for Au/Ni-supported catalyst [29]. ..................................................................... 13 Figure 8: Data on Ni/La2O3-SiO2 on conversion of CH4 [30]. ................................................................. 14 Figure 9: Representative perovskite unit cell [35]. ............................................................................... 15 Figure 10: Representative spinel unit cell [40] ..................................................................................... 15 Figure 11: Representative hexaaluminate unit cell [42]. ...................................................................... 16 Figure 12: Typical catalytic materials with confinement environment for metal nanoclusters[44]. ... 17 Figure 13: Physicochemical properties of Ni-PS catalysts. TEM images of (a) lamellar Ni-PS, (b) tubular Ni-PSn, (c) reduced Ni-PS (d) reduced Ni-PSn [45]. ................................................................... 17 Figure 14: Possible reaction pathways in APR. Asterisk represents a surface metal site [57]. ............ 20 Figure 15: TOF of several Pd supported catalysts in ethylene glycol reforming [65] ........................... 22 Figure 16: Comparison of H2 and alkanes selectivities of Raney-NiSn (squares 480K, circles 283K) and Pt/Al2O3 catalyst (dashed lines) for APR of 1%wt oxygenated hydrocarbons [70]. ..................... 23 Figure 17: SEM images of fresh and spent catalyst[71]. ....................................................................... 23 Figure 18. Comparison of bimetallic and monometallic catalysts during APR of 10%wt sorbitol at 200C and 20 bars. Rate of H2 formation (black) and gas-phase H2 selectivity (grey) [73]. ................. 24 Figure 19 H2 and alkane production by APR of glycerol [68]. ............................................................... 25 Figure 20: Effect of the support on the APR of EG at 45.5 bar, over Pt-Fe (1:3) catalyst.[81] ............. 26 Figure 21: APR of 10% wt EG at 483 K and 25.4 bar over Pt:Ni (A) and Pt:Co (B) bimetallic catalysts. TOF H2 (black) and alkane selectivity (grey). [65] ................................................................................ 26 Figure 22: Schematic representation of alkaline exchange membrane water electrolysis process..... 29 Figure 23: Alkaline OER mechanism. The green line indicates O2 formation possibility from M-O instead of M-OOH intermediate: M= Metal [98] .................................................................................. 30 Figure 24: NiFe alloy in OER [106]. ........................................................................................................ 32 Figure 25: Volcano plot of the intrinsic activities of transition metal (oxyhydro)oxides versus M-OH bond strength.[97]. ............................................................................................................................... 33 Figure 26: Synergetic effect and strategies for the development of the high performance of multi- metal catalyst for OER [114] ................................................................................................................. 35 Introduction The rapid population growth and the paradigm shift of standard living of human beings have led to consuming massive world's energy. This heavy usage of energy navigated to an unprecedented energy crisis and global warming, intimidating the life of mankind [1]. The current primary energy source is extracted mainly from fossil fuels such as coal, natural gas, and crude oil. However, those non- renewable energy sources are limited in reservoirs and are also environmentally detrimental, which causes greenhouse gas emission, air pollution and acid rain. Those drawbacks mentioned above of fossil fuel triggered researchers to pursuit an alternative energy source. It becomes imperative to hunt