Mitochondrial DNA in Mammalian Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial DNA in Mammalian Reproduction Reviews of Reproduction (1998) 3, 172–182 Mitochondrial DNA in mammalian reproduction Jim Cummins Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia Mitochondrial DNA (mtDNA) forms a semi-autonomous asexually reproducing genome in eukaryotic organisms. It plays an essential role in the life cycle through the control of energy production, by the inherently dangerous process of oxidative phosphorylation. The asym- metric nature of its inheritance – almost exclusively through the female – imposes different evolutionary constraints on males and females, and may lie at the heart of anisogamy. This review examines the implications of recent findings on the biology of mtDNA for reproduction and inheritance in mammals. Although the existence of mitochondria has been known since encodes for tryptophan in mammalian mitochondria). The in- the last century, mitochondrial DNA (mtDNA) has been studied heritance of mitochondria through the female lineage remains most extensively in the past two decades. Mitochondria have one of the central enigmas of reproductive biology. a profound role to play in mammalian tissue bioenergetics, in Mitochondria have certain tissue-specific configurations that growth, in ageing and in apoptosis, and yet they descend from presumably reflect local energetic requirements (Fawcett, 1981). an asexually reproducing independent life form. It has been New techniques for visualizing mitochondria in whole cells, hypothesized that tensions between the evolutionary ‘interests’ such as the incorporation of green fluorescent protein coupled of the eukaryotic host and its subservient organelles have led to with confocal microscopy, reveal that mitochondrial form can asymmetrical inheritance, so that mitochondria derive pre- not only reflect pathological states but may also be extremely dominantly from the female in most organisms (Hurst, 1992; diverse even within the same cell (Kanazawa et al., 1997). The Hurst et al., 1996). This has consequences that are only just be- basic design is a double membrane surrounding an inner mito- coming apparent. There is considerable interest in the potential chondrial matrix that contains one or more circular mtDNA role of mitochondria and cytoplasmic inheritance on growth molecules. The outer mitochondrial membrane is thought to and performance factors such as muscle development and milk represent the original invaginated host plasma membrane, production in domestic animals. As might be expected, the while the inner mitochondrial membrane represents the bac- maternally inherited mitochondrial genome has significant terial wall and contains the site of oxidative phosphorylation non-Mendelian effects on steroidogenesis and on respiratory- (OXPHOS) on its inner surface. The matrix also contains ribo- dependent functions such as growth, oxygen consumption and somes for local protein synthesis. lean:fat ratios, but not on anaerobic metabolism. Smith and The two membranes differ profoundly in composition. The Alcivar (1993) have reviewed this topic recently and compre- lipid:protein ratio of the outer membrane is about 50:50 and hensively; therefore, the focus of this article will be the role of it is permeable to molecules with molecular weights of up to mtDNA in the life cycle. 10 000 (Lodish et al., 1995). The inner membrane is relatively Mitochondria are semi-autonomous organelles found in all impermeable and is about 80% protein and is thrown up into eukaryotic cells (except mature red blood cells and some pro- infoldings – crystae – the sites of OXPHOS enzymes. Here the tozoans). It is generally accepted that mitochondria originated oxidation of metabolites generates ATP through a series of in ancestral eukaryotic cells through endosymbiosis of free- integral membrane multi-subunit protein complexes which living bacteria capable of metabolizing oxygen – a suggestion couple electron transport to ATP synthesis. These complexes first made over a century ago and noted by Ozawa in his review are unique in that they consist of proteins encoded by two (Ozawa, 1997a). Our ancestral eukaryotes thus exploited the separate yet cooperating genomes, that of the nucleus and that capacity of mitochondria to metabolise oxygen. This allowed of the mitochondrion (Poyton and McEwen, 1996; Shadel and them to flourish despite the increasing concentrations of this Clayton, 1997) There are separate translocase systems in the highly reactive and potentially poisonous element in the en- inner and outer membranes that coordinate the recognition, vironment. While most of the mitochondrial genes have moved import and assortment of essential proteins from the cytosol to the nucleus, mitochondria retain their bacterial facility for (Neupert, 1997). multiplying by simple fission – and even fusing – indepen- dently of the host cell cycle. Excess mitochondria are removed Mitochondrial DNA by autophagic lysosomal activity. These population control measures act in response to the energetic demands of different Most cells in the body contain between 103 and 104 copies of tissues. The mitochondrial genome also has idiosyncrasies in mtDNA. There are much higher copy numbers (about 105) in RNA processing and in its genetic code that differ from those of mature oocytes. This may be in preparation for the energetic nuclear DNA (for example UGA is normally a stop codon, but demands of embryogenesis (Pikó and Matsumoto, 1976) but © 1998 Journals of Reproduction and Fertility 1359-6004/98 $12.50 Downloaded from Bioscientifica.com at 09/24/2021 01:14:10PM via free access Mitochondrial DNA in the life cycle 173 Table 1. Fate of light and heavy chain transcripts from mitochondrial DNA Displaced heavy strand (D-loop) Light chain transcripts Heavy chain transcripts Heavy strand Nascent heavy origin strand 8 tRNAs 14 tRNAs 1 mRNA 12 mRNAS Heavy strand RNA primers for heavy chain replication 2 tRNAs promoter Transcription Modified from Shadel and Clayton, 1997 factor binding Light strand sites promoter an alternative explanation is that replication does not occur during early embryogenesis and that high copy numbers are needed to give a sufficient reservoir (see below). The DNA Light strand origin exists mainly as a circular molecule of approximately 16.6 kb, (stem-loop) encoding 13 proteins that are transcribed and translated in the mitochondrion (Table 1). These are essential subunits of the electron transport complexes on the inner mitochondrial mem- brane. The mitochondrial genome also encodes the RNA mol- ecules that are necessary for the translation of these proteins (Table 1) (Lodish et al., 1995; Shadel and Clayton, 1997). mtDNA structure Fig. 1. This diagram summarizes the major features of mtDNA re- ferred to in the text. (See Shadel and Clayton, 1997.) The separate strands of the mtDNA molecule differ in buoy- ant density; the heavier ‘H-strand’ has a higher G + T content than the light ‘L-strand’. Transcription occurs simultaneously and in opposite directions and many genes overlap. By con- Box 1 Major mitochondrial import proteins vention mtDNA is depicted as a circle (Fig. 1), but alternatives, such as dimer loops and catenated (chain-linked) circles, are Mitochondrial DNA and RNA polymerases known (Clayton, 1982). In some single-celled organisms (many Transcription, translation and transcription termination factors RNA processing enzymes pathogenic to mammals) aberrant linear mtDNA molecules Mitochondrial ribosomal proteins with telomere-like endings are also found (Nosek et al., 1998). Aminoacyl-tRNA synthetases There is a specialised, somewhat unstable and hypervariable region called the D-(displacement) loop, where there is a triplex DNA structure at the site of origin of the H strand (Fig. 1). This structure is formed by a short nascent H-strand that remains closely associated with the parental molecule. This region is crit- Neupert, 1997). Besides structural components of the mitochon- ical for the initiation of transcription and translation (see below). dria, these imports involve factors that regulate and specifically The mammalian mitochondrial genome is extremely com- recognize mtDNA and regulate gene expression (Box 1). pressed with no introns. Some genes even overlap. This con- trasts strikingly with, for example, yeast (five times larger at Nuclear–mitochondrial interactions 78 000 bp) or plants, in which there are multiple recombining molecules with enormous size variation even within a family. Any alterations that arise in the components of the mtDNA For example, sizes vary from 330 000 bp in watermelons to or RNA that recognize or bind to nuclear-encoded regulatory 2.5 + 106 bp in muskmelon (Lodish et al., 1995). Most of the 100 elements must be balanced by compensatory mutations in the or more genes controlling the synthesis of mammalian mito- nuclear genes, as the mitochondrial genome mutates much chondrial proteins have moved to the nucleus over the course more rapidly than the nuclear genome (see below). This mu- of evolution. tuality is thought to drive species specificity in nuclear– mitochondrial interaction (Kenyon and Moraes, 1997; Wallace, 1997), but surprisingly little is known about the coordination of Import–export mechanisms expression between the nuclear and mitochondrial genomes. Proteins are assembled on cytoplasmic ribosomes and trans- However, it is clearly a sensitive system. Nagao et al. (1998) ported into the mitochondrion through protein-lined channels, found decreased physical performance and growth rates in with the aid of cytoplasmic
Recommended publications
  • Clinical Genetics: Mitochondrial Replacement Techniques Under the Spotlight
    RESEARCH HIGHLIGHTS Nature Reviews Genetics | AOP, published online 1 July 2014; doi:10.1038/nrg3784 BRAND X PICTURES CLINICAL GENETICS Mitochondrial replacement techniques under the spotlight Mutations in the mitochondrial genome have and quantitative PCR showed that PBs contain been associated with diverse forms of human dis- fewer mitochondria than pronuclei in zygotes and ease, such as Leber’s hereditary optic neuropathy than spindle–chromosome complexes in oocytes. and Leigh’s syndrome, a neurometabolic disorder. The researchers then evaluated the feasibility A preclinical mouse model now demonstrates the of PB1 or PB2 transfer in mice and compared feasibility of using polar body (PB) genomes as their efficacies with that of MST or PNT. Genetic donor genomes in a new type of mitochondrial analysis showed that oocytes generated by PB1 replacement technique aimed at preventing the genome transfer were fertilized at rates that are inheritance of mitochondrial diseases. comparable to those obtained for oocytes ferti- 2014 has seen a surge in interest from both lized after MST (89.5% and 87.5%, respectively). the UK Human Fertilisation and Embryology Moreover, 87.5% of PB1–oocytes and 85.7% Authority (HFEA) and the US Food and Drug of MST–oocytes developed into blastocysts. Administration (FDA) in evaluating methods By contrast, PNT–embryos developed into designed to prevent the transmission of mito- blastocysts more frequently than PB2–oocytes chondrial diseases. One approach that is currently (81.3% and 55.5%, respectively), despite similar under investigation is mitochondrial replacement cleavage rates. by pronuclear transfer (PNT), in which the paren- Normal live progeny were obtained with all of tal pronuclei of a fertilized egg containing the these techniques at birth rates similar to those mother’s mutated mitochondrial DNA (mtDNA) of an intact control group.
    [Show full text]
  • Mitosis Vs. Meiosis
    Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father.
    [Show full text]
  • Meiosis Is a Simple Equation Where the DNA of Two Parents Combines to Form the DNA of One Offspring
    6.2 Process of Meiosis Bell Ringer: • Meiosis is a simple equation where the DNA of two parents combines to form the DNA of one offspring. In order to make 1 + 1 = 1, what needs to happen to the DNA of the parents? 6.2 Process of Meiosis KEY CONCEPT During meiosis, diploid cells undergo two cell divisions that result in haploid cells. 6.2 Process of Meiosis Cells go through two rounds of division in meiosis. • Meiosis reduces chromosome number and creates genetic diversity. 6.2 Process of Meiosis Bell Ringer • Draw a venn diagram comparing and contrasting meiosis and mitosis. 6.2 Process of Meiosis • Meiosis I and meiosis II each have four phases, similar to those in mitosis. – Pairs of homologous chromosomes separate in meiosis I. – Homologous chromosomes are similar but not identical. – Sister chromatids divide in meiosis II. – Sister chromatids are copies of the same chromosome. homologous chromosomes sister sister chromatids chromatids 6.2 Process of Meiosis • Meiosis I occurs after DNA has been replicated. • Meiosis I divides homologous chromosomes in four phases. 6.2 Process of Meiosis • Meiosis II divides sister chromatids in four phases. • DNA is not replicated between meiosis I and meiosis II. 6.2 Process of Meiosis • Meiosis differs from mitosis in significant ways. – Meiosis has two cell divisions while mitosis has one. – In mitosis, homologous chromosomes never pair up. – Meiosis results in haploid cells; mitosis results in diploid cells. 6.2 Process of Meiosis Haploid cells develop into mature gametes. • Gametogenesis is the production of gametes. • Gametogenesis differs between females and males.
    [Show full text]
  • The Plan for This Week: Today: Sex Chromosomes: Dosage
    Professor Abby Dernburg 470 Stanley Hall [email protected] Office hours: Tuesdays 1-2, Thursdays 11-12 (except this week, Thursday only 11-1) The Plan for this week: Today: Sex chromosomes: dosage compensation, meiosis, and aneuploidy Wednesday/Friday: Dissecting gene function through mutation (Chapter 7) Professor Amacher already assigned the following reading and problems related to today’s lecture: Reading: Ch 4, p 85-88; Ch 6, p 195, 200; Ch 11, p 415; Ch. 18, skim p 669-677, Ch 13, 481-482 Problems: Ch 4, #23, 25; Ch 13, #24, 27 - 31 Let’s talk about sex... chromosomes We’ve learned that sex-linked traits show distinctive inheritance patterns The concept of “royal blood” led to frequent consanguineous marriages among the ruling houses of Europe. Examples of well known human sex-linked traits Hemophilia A (Factor VIII deficiency) Red/Green color blindness Duchenne Muscular Dystrophy (DMD) Male-pattern baldness* *Note: male-pattern baldness is both sex-linked and sex-restricted - i.e., even a homozygous female doesn’t usually display the phenotype, since it depends on sex-specific hormonal cues. Sex determination occurs by a variety of different mechanisms Mating-type loci (in fungi) that “switch” their information Environmental cues (crocodiles, some turtles, sea snails) “Haplodiploid” mechanisms (bees, wasps, ants) males are haploid, females are diploid Sex chromosomes We know the most about these mechanisms because a) it’s what we do, and b) it’s also what fruit flies and worms do. Plants, like animals, have both chromosomal and non-chromosomal mechanisms of sex determination. The mechanism of sex determination is rapidly-evolving! Even chromosome-based sex determination is incredibly variable Mammals (both placental and marsupial), fruit flies, many other insects: XX ♀/ XY ♂ Many invertebrates: XX ♀or ⚥ / XO ♂ (“O” means “nothing”) Birds, some fish: ZW ♀ / ZZ ♂(to differentiate it from the X and Y system) Duckbilled platypus (monotreme, or egg-laying mammal): X1X1 X2X2 X3X3 X4X4 X5X5 ♀ / X1Y1 X2Y2 X3 Y 3 X4X4 X5Y5 ♂ (!!?) Note: these are given as examples.
    [Show full text]
  • What Is Meiosis? TERMINOLOGY
    8/21/2016 What is Meiosis? GENETICS A division of the nucleus that reduces • INHERITED: GENES ARE INHERITED FROM YOUR PARENTS. OFFSPRING RESEMBLE THEIR chromosome number by half. PARENTS. GENES CODE FOR CERTAIN TRAITS THAT ARE PASSED ON FROM GENERATION TO GENERATION. •Important in sexual reproduction • •Involves combining the genetic • HEREDITY #2: HEREDITY IS THE PASSAGE OF THESE GENES FROM GENERATION TO information of one parent with that of GENERATION. EACH GENE IS A SET OF CODED INSTRUCTIONS FOR A SPECIFIC TRAIT. • the other parent to produce a • CHROMOSOME THEORY: CHROMOSOMES THAT SEPARATE DURING MEIOSIS ARE THE SAME AS THE CHROMOSOMES THAT UNITE DURING FERTILIZATION. GENES ARE CARRIED genetically distinct individual ON THOSE CHROMOSOMES. Homologous Chromosomes Similar chromosomes that are found in pairs. The paired TERMINOLOGY chromosomes come from the mother and father. * Human body cells have 46 chromosomes each • DIPLOID - TWO SETS OF CHROMOSOMES (2N), IN HUMANS * Human body cells have 23 homologous pairs 23 PAIRS OR 46 TOTAL • HAPLOID - ONE SET OF CHROMOSOMES (N) - GAMETES OR Meiosis and Fertilization SEX CELLS, IN HUMANS 23 CHROMOSOMES • HOMOLOGOUS PAIR Important for survival of many species, because these processes • EACH CHROMOSOME IN PAIR ARE IDENTICAL TO THE OTHER ( result in genetic variation of offspring. CARRY GENES FOR SAME TRAIT) • ONLY ONE PAIR DIFFERS - SEX CHROMOSOMES X OR Y Meiosis A kind of cell division that results in gametes (sex cells) with half the number of chromosomes. Chromosomes Cell from parentsMEIOSIS
    [Show full text]
  • List, Describe, Diagram, and Identify the Stages of Meiosis
    Meiosis and Sexual Life Cycles Objective # 1 In this topic we will examine a second type of cell division used by eukaryotic List, describe, diagram, and cells: meiosis. identify the stages of meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis and meiosis, are involved in transmitting genetic information from one generation to the next during eukaryotic life cycles. 1 2 Objective 1 Objective 1 Overview of meiosis in a cell where 2N = 6 Only diploid cells can divide by meiosis. We will examine the stages of meiosis in DNA duplication a diploid cell where 2N = 6 during interphase Meiosis involves 2 consecutive cell divisions. Since the DNA is duplicated Meiosis II only prior to the first division, the final result is 4 haploid cells: Meiosis I 3 After meiosis I the cells are haploid. 4 Objective 1, Stages of Meiosis Objective 1, Stages of Meiosis Prophase I: ¾ Chromosomes condense. Because of replication during interphase, each chromosome consists of 2 sister chromatids joined by a centromere. ¾ Synapsis – the 2 members of each homologous pair of chromosomes line up side-by-side to form a tetrad consisting of 4 chromatids: 5 6 1 Objective 1, Stages of Meiosis Objective 1, Stages of Meiosis Prophase I: ¾ During synapsis, sometimes there is an exchange of homologous parts between non-sister chromatids. This exchange is called crossing over. 7 8 Objective 1, Stages of Meiosis Objective 1, Stages of Meiosis (2N=6) Prophase I: ¾ the spindle apparatus begins to form. ¾ the nuclear membrane breaks down: Prophase I 9 10 Objective 1, Stages of Meiosis Objective 1, 4 Possible Metaphase I Arrangements: Metaphase I: ¾ chromosomes line up along the equatorial plate in pairs, i.e.
    [Show full text]
  • Mitosis Meiosis Karyotype
    POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 1: karyotype Meiosis Mitosis 1 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 2, Part 1: Spermatogenesis The trapezoid below represents a small portion of the wall of a "seminiferous tubule" within the testis. The cells in each of the panels are all originally derived from the single cell in panel 1. 1 2 3 Outside of tubule Lumen of tubule 4 5 6 7 8 9 2 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 2, Part 2: vas epididymis deferens testis (plural: testes) seminiferous tubules (cut) Courtesy of: Dr. E. Kent Christensen, U. of Michigan lumen of seminiferous tubule sperm This portion shown expanded in part 1 of Model 2 3 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell MODEL 3: Oogenesis This is a time lapse of an ovary showing one "follicle" as it develops from immaturity to ovulation. The follicle starts in panel 1 as a small sphere of "follicle cells" surrounding the oocyte. In each panel, chromosomes within the oocyte are shown as an inset. (There are actually thousands of follicles in each mammalian ovary). 1 2 3 4 5 6 7 4 POGIL Cell Biology Activity 7 – Meiosis/Gametogenesis Schivell Model 1 questions: 1. Using the same type of cartoon as model 1, draw an "unreplicated", condensed chromosome. 2. Draw a replicated, condensed chromosome: 3. Circle a homologous pair in the karyotype. Remember that one of these chromosomes came from the male parent and the other from the female parent. These two chromosomes carry the same genes! (But can have different alleles on each homolog.) 4.
    [Show full text]
  • How Genes Work
    Help Me Understand Genetics How Genes Work Reprinted from MedlinePlus Genetics U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services Table of Contents 1 What are proteins and what do they do? 1 2 How do genes direct the production of proteins? 5 3 Can genes be turned on and off in cells? 7 4 What is epigenetics? 8 5 How do cells divide? 10 6 How do genes control the growth and division of cells? 12 7 How do geneticists indicate the location of a gene? 16 Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) i How Genes Work 1 What are proteins and what do they do? Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of thebody’s tissues and organs. Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chains. There are 20 different types of amino acids that can be combined to make a protein. The sequence of amino acids determineseach protein’s unique 3-dimensional structure and its specific function. Aminoacids are coded by combinations of three DNA building blocks (nucleotides), determined by the sequence of genes. Proteins can be described according to their large range of functions in the body, listed inalphabetical order: Antibody. Antibodies bind to specific foreign particles, such as viruses and bacteria, to help protect the body. Example: Immunoglobulin G (IgG) (Figure 1) Enzyme.
    [Show full text]
  • Proctor Booklet
    3.11 C: Meiosis Quiz PROCTOR VERSION 1. Which diagram best illustrates the processes of DNA replication, meiosis, and separation of sister chromatids? (A) Distractor Rationale: This answer suggests the student may understand that meiosis involves the splitting of homologous chromosomes, but does not understand that the first step in this process is the replication of all chromosomes to create a pair of two chromatids attached by a centromere (the X-shaped structures), and that the last step is the separation of sister chromatids in meiosis II to create four daughter cells, each containing a long chromosome and a short chromosome. (B) Distractor Rationale: This answer suggests the student may understand that meiosis involves the replication of all chromosomes and the pairing up and separation of homologous chromosomes, but does not understand that the final step in this process is the separation of sister chromatids in meiosis II to produce four haploid daughter cells, each with the haploid number of chromosomes. (C) Page 1 of 8 3.11 C: Meiosis Quiz PROCTOR VERSION Distractor Rationale: This answer suggests the student may understand that meiosis involves the replication of all chromosomes and the separation of sister chromatids, but does not realize that the first division involves the pairing up and separation of homologous chromosomes, and that this is then followed by a second division that produces four daughter cells, each with the haploid number of chromosomes. (D) Rationale: This answer suggests the student understands that the representation accurately depicts how the process of meiosis produces four haploid cells from one diploid parent cell: the formation of chromosomes, formation of the spindle complex, pairing of homologs, lining up of homologs on the equator, migration of chromosomes, and two divisions.
    [Show full text]
  • Review Questions Meiosis
    Review Questions Meiosis 1. Asexual reproduction versus sexual reproduction: which is better? Asexual reproduction is much more efficient than sexual reproduction in a number of ways. An organism doesn’t have to find a mate. An organism donates 100% of its’ genetic material to its offspring (with sex, only 50% end up in the offspring). All members of a population can produce offspring, not just females, enabling asexual organisms to out-reproduce sexual rivals. 2. So why is there sex? Why are there boys? If females can reproduce easier and more efficiently asexually, then why bother with males? Sex is good for evolution because it creates genetic variety. All organisms depend on mutations for genetic variation. Sex takes these preexisting traits (created by mutations) and shuffles them into new combinations (genetic recombination). For example, if we wanted a rice plant that was fast-growing but also had a high yield, we would have to wait a long time for a fast-growing rice to undergo a mutation that would also make it highly productive. An easy way to combine these two desirable traits is through sexually reproduction. By breeding a fast-growing variety with a high-yielding variety, we can create offspring with both traits. In an asexual organism, all the offspring are genetically identical to the parent (unless there was a mutation) and genetically identically to each other. Sexual reproduction creates offspring that are genetically different from the parents and genetically different from their siblings. In a stable environment, asexual reproduction may work just fine. However, most ecosystems are dynamic places.
    [Show full text]
  • Meiosis I and Meiosis II; Life Cycles
    Meiosis I and Meiosis II; Life Cycles Meiosis functions to reduce the number of chromosomes to one half. Each daughter cell that is produced will have one half as many chromosomes as the parent cell. Meiosis is part of the sexual process because gametes (sperm, eggs) have one half the chromosomes as diploid (2N) individuals. Phases of Meiosis There are two divisions in meiosis; the first division is meiosis I: the number of cells is doubled but the number of chromosomes is not. This results in 1/2 as many chromosomes per cell. The second division is meiosis II: this division is like mitosis; the number of chromosomes does not get reduced. The phases have the same names as those of mitosis. Meiosis I: prophase I (2N), metaphase I (2N), anaphase I (N+N), and telophase I (N+N) Meiosis II: prophase II (N+N), metaphase II (N+N), anaphase II (N+N+N+N), and telophase II (N+N+N+N) (Works Cited See) *3 Meiosis I (Works Cited See) *1 1. Prophase I Events that occur during prophase of mitosis also occur during prophase I of meiosis. The chromosomes coil up, the nuclear membrane begins to disintegrate, and the centrosomes begin moving apart. The two chromosomes may exchange fragments by a process called crossing over. When the chromosomes partially separate in late prophase, until they separate during anaphase resulting in chromosomes that are mixtures of the original two chromosomes. 2. Metaphase I Bivalents (tetrads) become aligned in the center of the cell and are attached to spindle fibers.
    [Show full text]
  • Meiosis in Polyploids the Number of Long Chromosomes with a Second Constriction (Darlington, 1926) Was Identified It Is Denoted by the Letter L I
    C. ]). ])AlZLINGTON 17 PART II. ANEUPLOID HYACINTI~tSL BY C. D. DARLINGTON. CONTENTS. PAC:E 1. ] N'I:1l O1"~ UO'I'I 0I,~ 17 2. Mz'nmu8 18 3. M,vrsRIm~ . 19 4. SOMATI0 :DIviSiONS 19 5. POLLNN ~{O'I'HER-tJELL DIVISIONS IN TIIlSOMI0 VARIETIES 20 (i) Oeac.'~l 20 (ii) Nobe on the Diploid . 22 (iii) First MeUq~h~o 22 (iv) Anaphasc: Division of the Trivalo.t. 28 (v) Second J)ivislon 31 (J. I:~OLLEN 1%IOT]INIt-OBLL DIVISIONS IN T:I~TIIASOMIO VARIETIES 32 (i) Tho Tetrasomio Variotios . 32 (ii) First MOtal~hase 32 (iii) Second Division 37 7. l~ItOl'IthSE O~" 'mE POLLEN ~'[O'I'[LER-OI~SLDiViSIONS 38 (i) Triple ]?airing 38 (ii) Quadruple Pairing 39 8. DlsoussloN . 41 (i) Mult{p|c Association of Cl}l'OnlO8OlllO8 .. 41 (ii) lndlrc~;l~ .Evidence on the Origi. of Chlasmat~, 42 (iii) Gc.cl~ical Considerations . 43 (iv) Chromosome Matiug and Crossing Over 47 9. St~tMARY ,52 RE FERENCEH 54 EXPLANATION OF PLATES 56 NOTE ON 'HIE DIAGRA~I 56 I. INTRODUC"rION. DE MOL'S work revealed in the hyacinths maberial of pecldiar in- terest for fm'ther cytological study. It was evident that individuals having almost every possible chromosome combination between diploid and triploid and between triploid and tetraploid had given rise to the ctflMvated clones of hyacinths. Moreover the chromosomes were of three sharply differentiated types having, as was shown later (Belling, 1925; Darlington, 1926), definite and consbant constrictions. Finally, being derived, so far as we know, ~4thout any ga'oss hybl~disation from a diploid species, the homologous chromosomes might be expected to be x I,mludl.g triploids.
    [Show full text]