Parallel Approaches for Efficient Scalar Multiplication Over Elliptic

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Approaches for Efficient Scalar Multiplication Over Elliptic Parallel Approaches for Efficient Scalar Multiplication over Elliptic Curve Christophe Negre, Jean-Marc Robert To cite this version: Christophe Negre, Jean-Marc Robert. Parallel Approaches for Efficient Scalar Multiplication over Elliptic Curve. SECRYPT, Jul 2015, Colmar, France. pp.202-209, 10.5220/0005512502020209. hal- 01206530 HAL Id: hal-01206530 https://hal.archives-ouvertes.fr/hal-01206530 Submitted on 29 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Parallel Approaches for Efficient Scalar Multiplication over Elliptic Curve Christophe Negre1 and Jean-Marc Robert1 1 Equipe DALI (Universit´ede Perpignan) and LIRMM (Univ. de Montpellier, CNRS), Perpignan, France fchristophe.negre, [email protected] Keywords: Elliptic curve, parallel implementation, scalar multiplication, prime field, binary field. Abstract: This paper deals with parallel implementation of scalar multiplication over an elliptic curve. We present parallel approaches which split the scalar into two parts for E(Fp) or three parts for E(F2m ) and perform in parallel the scalar multiplication with each part of the scalar. We present timing results of these approaches implemented over an Intel Core i7 for NIST binary curves B233, B409 and for the twisted Edwards curve Curve25519 (Bernstein, 2006). For the curves B409 and Curve25519 the proposed approaches improve by at least 10% the computation time of the scalar multiplication. 1 INTRODUCTION per and lower part, and we compute scalar mul- tiplication of each part in parallel. This requires Elliptic curve cryptographic protocols gener- an additional sequence of doublings or halvings ally involve one or two scalar multiplications on to finish the upper part computations before the curve. A scalar multiplication consists in adding the two computed points. We have ex- computing kP = P + + P where k is an inte- perimented this approach and the resulting tim- ger of several hundreds··· of bits and P is a point on ings show some interesting speed-up for the NIST the curve. This is generally performed through a curve B409 and also for the twisted Edward curve sequence of hundreds of doublings and additions Curve25519 (Bernstein, 2006). on the curve using the so-called double-and-add The remaining of the paper is organized as algorithm. It is thus a time consuming part of follows: in Section 2 we review basic results on the cryptographic protocols. elliptic curves over binary and prime fields. In Actual and future processors on personal com- Section 3 we present our approaches for the par- puters and embedded devices will include an in- allelization of scalar multiplication. In Section 4 creasing number of cores, enabling more paral- we provide experimental results and we end the lelism. The implementation of scalar multiplica- paper with some concluding remarks in Section 5. tion might be adapted to these new platforms. A recent interesting work of Taverne et al. (Taverne et al., 2011) on binary elliptic curves showed that 2 REVIEW OF ELLIPTIC a curve scalar multiplication can be parallelized CURVE SCALAR through a (double,halve)-and-add approach re- sulting in an interesting speed-up. GLV (Gal- MULTIPLICATION lant et al., 2001) is another popular approach to perform a scalar multiplication in parallel fash- An elliptic curve over a finite field Fq is the set 2 ion (Longa and Sica, 2014; Oliveira et al., 2014), of points (x; y) Fq satisfying a smooth equation but unfortunately GLV cannot be used on stan- of degree 3 plus2 a point at infinity . A commuta- dard curves (P. Gallagher and Furlani, 2009). tive group law can be defined on thisO set of points We explore in this paper an alternative par- using the chord and tangent method. This pro- allel approach. We split the scalar k in an up- vides doubling and addition formulas consisting in a number of field operations on the coordinates we know the difference R = Q P , then we of the points. The complexity of these formu- can compute Q + P as follows: − las can be reduced by choosing appropriate curve (x x 1)2 equation and system of coordinates. In the re- Q P xQ+P = − 2 : (4) xR(xP xQ) maining of this section, we review curve equation − and point operation formulas in the case of ellip- Montgomery curves and twisted Edwards curves tic curve defined over binary field and prime field. are isomorphic. A conversion of the point coor- We also review classical algorithms for scalar mul- dinates between these two curves requires only a tiplication. few field operations. 2.1 Point operations in E(Fp) The formulas in (1), (2) and (3) involve a field inversion which is generally a costly operation. An elliptic curve E(Fp) over a prime field Fp is Alternative coordinate systems have been pro- generally defined by a short Weierstrass equation: posed in the case of Weierstrass, Montgomery, 2 3 2 twisted Edwards and Jacobi quartic in order to E : y = x + ax + b with (a; b) Fp: 2 avoid field inversions and reduce the number of In this case addition and doubling formulas given field multiplications: by the chord and tangent method are as follows: Extended coordinate system where a quadru- let P1 = (x1; y1);P2 = (x2; y2) and P3 = (x3; y3); • plet (X; Y; Z; T ) represents the points x = be three points on E(Fp) such that P3 = P1 + P2, X=Z; y = Y=Z and T=Z = xy. then we have: Regular projective coordinates where a triplet 2 x3 = λ x1 x2; • − − (X; Y; Z) represents a point x = X=Z; y = y3 = λ(x1 x3) y1; − − Y=Z. ( y2−y1 (1) λ = if P1 = P2; x2−x1 Inverted coordinates : a triplet (X; Y; Z) cor- where 2 6 3x1+a • λ = + x1 if P1 = P2: responds to a point x = Z=X and y = Z=Y . 2y1 The cost of a doubling, an addition and a In the sequel we will use the two following al- mixed addition in these coordinate systems are ternative elliptic curve equations: given in Table 1. Twisted Edwards (Hisil et al., 2008). The • twisted Edwards elliptic curve equation is as 2.2 Operations in binary elliptic follows: 2 2 2 2 curves ax + y = 1 + dx y where a and d are two elements in Fp. In this An elliptic curve over a binary field is generally case there is an unified addition and doubling defined by the following short Weierstrass equa- formula: if P1 = (x1; y2) and P2 = (x2; y2) are tion: in E( p), then the affine coordinates (x3; y3) F 2 3 2 of P3 = P1 + P2 are as follows: E : y + xy = x + ax + b with a; b F2m : (5) 2 x3=(x1y2 + y1x2)=(1 + dx1x2y1y2); The formulas for addition, doubling and halving (2) y3=(y1y2 ax1x2)=(1 dx1x2y1y2): on E( m ) are as follows: − − F2 Addition and doubling. We consider two Montgomery curves (Montgomery, 1987). We • • consider Montgomery elliptic curves which points P1 = (x1; y1) and P2 = (x2; y2) on have the following form: the curve E(F2m ). The coordinates (x3; y3) of P = P + P are given by the following 2 3 2 2 3 1 2 E : by = x + ax + x with (a; b) Fp: 2 formula: 2 Montgomery noticed in (Montgomery, 1987) x3 = λ + λ + x1 + x2 + a; that for Q = (xQ; yQ) the x-coordinate of 2Q y3 = (x1 + x3)λ + x3 + y1; depends only on xQ: y1+y2 (6) if P1 = P2; x1+x2 2 2 where λ = y1 6 (x 1) + x1 if P1 = P2: Q x1 x2Q = − : (3) 4x (x2 + ax + 1) Q Q Q Point halving. In (Knudsen, 1999), Knudsen • Moreover, Montgomery noticed that given two noticed that if a point Q = (u; v) on E(F2m ) 1 points Q = (xQ; yQ) and P = (xP ; yP ) and if is of odd order, then the point P = 2 Q in Table 1 { Complexity of curve operations in E(Fp) Curve form Coordinates Doubling mixed Addition Addition Weierstrass (a = −3) Jacobian 4M + 4S 8M + 3S 12M + 4S Twisted Edwards Inverted 3M + 4S + Ma + M2d 8M + 1S + Ma + Md 9M + 1S + Ma + Md Jacobi quartic XXYZZ coord. 3M + 4S 6M + 3S + Ma−1 7M + 4S + Ma−1 Montgomery Projective 2M + M(a+2)=4 + 2S - 4M + 2S Table 2 { Complexity of curve operation in E(F2m ) when a = 1 Coordinates Doubling Halving Mixed-addition Doubling-mixed-addition Addition Affine 2M + I 1M + 1SqRt + 1QS - 4M + 2I 2M + I Lopez-Dahab 4M + 5S - 9M + 4S 13M + 4S 13M + 9S Kim-Kim 4M + 5S - 8M + 4S 12M + 9S 12M + 4S Lambda proj. 4M + 4S - 8M + 2S 10M + 6S 11M + 4S the subgroup generated by Q is well defined. For explicit point addition and doubling formulas Knudsen also noticed that the computation in these projective coordinate systems the reader of the coordinates of P in terms of the coor- may refer to (Hankerson et al., 2004; Kim and dinates of Q can be computed efficiently. In- Kim, ; Oliveira et al., 2014). In Table 2 we report deed, since Q = 2P and we can use (6) to the corresponding cost of each point operation on derive the coordinates of P = (x; y) in terms the curve when a = 1. We do not report the com- of Q = (u; v) as follows: plexity of a point halving in projective coordinate systems, since in this case the quadratic solver re- λ = x + y=x (7) quires a field inversion and makes the halving in- 2 u = λ + λ + a (8) efficient.
Recommended publications
  • Elliptic Curve Arithmetic for Cryptography
    Elliptic Curve Arithmetic for Cryptography Srinivasa Rao Subramanya Rao August 2017 A Thesis submitted for the degree of Doctor of Philosophy of The Australian National University c Copyright by Srinivasa Rao Subramanya Rao 2017 All Rights Reserved Declaration I confirm that this thesis is a result of my own work, except as cited in the references. I also confirm that I have not previously submitted any part of this work for the purposes of an award of any degree or diploma from any University. Srinivasa Rao Subramanya Rao March 2017. Previously Published Content During the course of research contributing to this thesis, the following papers were published by the author of this thesis. This PhD thesis contains material from these papers: 1. Srinivasa Rao Subramanya Rao, A Note on Schoenmakers Algorithm for Multi Exponentiation, 12th International Conference on Security and Cryptography (Colmar, France), Proceedings of SECRYPT 2015, pages 384-391. 2. Srinivasa Rao Subramanya Rao, Interesting Results Arising from Karatsuba Multiplication - Montgomery family of formulae, in Proceedings of Sixth International Conference on Computer and Communication Technology 2015 (Allahabad, India), pages 317-322. 3. Srinivasa Rao Subramanya Rao, Three Dimensional Montgomery Ladder, Differential Point Tripling on Montgomery Curves and Point Quintupling on Weierstrass' and Edwards Curves, 8th International Conference on Cryptology in Africa, Proceedings of AFRICACRYPT 2016, (Fes, Morocco), LNCS 9646, Springer, pages 84-106. 4. Srinivasa Rao Subramanya Rao, Differential Addition in Edwards Coordinates Revisited and a Short Note on Doubling in Twisted Edwards Form, 13th International Conference on Security and Cryptography (Lisbon, Portugal), Proceedings of SECRYPT 2016, pages 336-343 and 5.
    [Show full text]
  • The Complete Cost of Cofactor H = 1
    The complete cost of cofactor h = 1 Peter Schwabe and Daan Sprenkels Radboud University, Digital Security Group, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands [email protected], [email protected] Abstract. This paper presents optimized software for constant-time variable-base scalar multiplication on prime-order Weierstraß curves us- ing the complete addition and doubling formulas presented by Renes, Costello, and Batina in 2016. Our software targets three different mi- croarchitectures: Intel Sandy Bridge, Intel Haswell, and ARM Cortex- M4. We use a 255-bit elliptic curve over F2255−19 that was proposed by Barreto in 2017. The reason for choosing this curve in our software is that it allows most meaningful comparison of our results with optimized software for Curve25519. The goal of this comparison is to get an under- standing of the cost of using cofactor-one curves with complete formulas when compared to widely used Montgomery (or twisted Edwards) curves that inherently have a non-trivial cofactor. Keywords: Elliptic Curve Cryptography · SIMD · Curve25519 · scalar multiplication · prime-field arithmetic · cofactor security 1 Introduction Since its invention in 1985, independently by Koblitz [34] and Miller [38], elliptic- curve cryptography (ECC) has widely been accepted as the state of the art in asymmetric cryptography. This success story is mainly due to the fact that attacks have not substantially improved: with a choice of elliptic curve that was in the 80s already considered conservative, the best attack for solving the elliptic- curve discrete-logarithm problem is still the generic Pollard-rho algorithm (with minor speedups, for example by exploiting the efficiently computable negation map in elliptic-curve groups [14]).
    [Show full text]
  • Montgomery Curves and the Montgomery Ladder
    Montgomery curves and the Montgomery ladder Daniel J. Bernstein and Tanja Lange Technische Universiteit Eindhoven, The Netherlands University of Illinois at Chicago, USA Abstract. The Montgomery ladder is a remarkably simple method of computing scalar multiples of points on a broad class of elliptic curves. This article surveys a wide range of topics related to the Montgomery ladder, both from the historical perspective of Weierstrass curves and from the modern perspective of Edwards curves. New material includes a full proof of a complete constant-time ladder algorithm suitable for cryptographic applications. This article is planned to appear as Chapter 4 of the book Topics in Com- putational Number Theory inspired by Peter L. Montgomery, edited by Joppe W. Bos and Arjen K. Lenstra. Two cross-references are to de- scriptions of ECM in FFT extension for algebraic-group factorization algorithms, by Richard P. Brent, Alexander Kruppa, and Paul Zimmer- mann, which is planned to appear as Chapter 9 of the same book. Author list in alphabetical order; see https://www.ams.org/profession/ leaders/culture/CultureStatement04.pdf. This work was supported by the Commission of the European Communities through the Horizon 2020 program under project ICT-645421 (ECRYPT-CSA), by the U.S. National Sci- ence Foundation under grants 1018836 and 1314919, and by the Netherlands Organisation for Scientific Research (NWO) under grant 639.073.005. “Any opinions, findings, and conclusions or recommendations expressed in this ma- terial are those of the author(s) and do not necessarily reflect the views of the National Science Foundation” (or other funding agencies).
    [Show full text]
  • 18.783 S17 Elliptic Curves Lecture 11: Index Calculus, Smooth Numbers, Factoring Integers
    18.783 Elliptic Curves Spring 2017 Lecture #11 03/15/2017 11 Index calculus, smooth numbers, and factoring integers Having explored generic algorithms for the discrete logarithm problem in some detail, we now consider a non-generic algorithm that uses index calculus. 1 This algorithm depends critically on the distribution of smooth numbers (integers with small prime factors), which naturally leads to a discussion of two algorithms for factoring integers that also depend on smooth numbers: the Pollard p − 1 method and the elliptic curve method (ECM). 11.1 Index calculus Index calculus is a method for computing discrete logarithms in the multiplicative group of a finite field. This might not seem directly relevant to the elliptic curve discrete logarithm problem, but aswe shall see whenwe discuss pairing-based cryptography, thesetwo problems are not unrelated. Moreover, the same approach can be applied to elliptic curves over non- prime finite fields, as well as abelian varieties of higher dimension [7, 8, 9].2 We will restrict our attention to the simplest case, a finite field of prime order p. Let us identify Fp ' Z=pZ with our usual choice of representatives for Z=pZ, integers in the interval [0;N], with N = p − 1. This innocent looking statement is precisely what will allow us to “cheat”, that is, to do something that a generic algorithm cannot. It lets us lift elements of Fp ' Z=pZ to the ring Z where we may consider their prime factorizations, something that makes no sense in a multiplicative group (every element is a unit) and is not available to a generic algorithm.
    [Show full text]
  • Twisted Edwards Curves
    Twisted Edwards Curves Daniel J. Bernstein1, Peter Birkner2, Marc Joye3, Tanja Lange2, and Christiane Peters2 1 Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago, Chicago, IL 60607–7045, USA [email protected] 2 Department of Mathematics and Computer Science Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands [email protected], [email protected], [email protected] 3 Thomson R&D France Technology Group, Corporate Research, Security Laboratory 1 avenue de Belle Fontaine, 35576 Cesson-S´evign´eCedex, France [email protected] Abstract. This paper introduces “twisted Edwards curves,” a general- ization of the recently introduced Edwards curves; shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form; shows how to cover even more curves via isogenies; presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates; and shows that twisted Edwards curves save time for many curves that were already expressible as Edwards curves. Keywords: Elliptic curves, Edwards curves, twisted Edwards curves, Montgomery curves, isogenies. 1 Introduction Edwards in [13], generalizing an example from Euler and Gauss, introduced an addition law for the curves x2 + y2 = c2(1 + x2y2) over a non-binary field k. Edwards showed that every elliptic curve over k can be expressed in the form x2 + y2 = c2(1 + x2y2) if k is algebraically closed. However, over a finite field, only a small fraction of elliptic curves can be expressed in this form. Bernstein and Lange in [4] presented fast explicit formulas for addition and doubling in coordinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on an Edwards curve, and showed that these explicit formulas save time in elliptic- curve cryptography.
    [Show full text]
  • Isomorphism Classes of Edwards Curves Over Finite Fields
    Isomorphism classes of Edwards curves over finite fields Reza Rezaeian Farashahi Department of Computing Macquarie University Sydney, NSW 2109, Australia and Department of Mathematical Sciences Isfahan University of Technology P.O. Box 85145 Isfahan, Iran [email protected] Dustin Moody National Institute of Standards and Technology (NIST) 100 Bureau Drive, Gaithersburg, MD, 20899, USA [email protected] Hongfeng Wu College of Sciences North China University of Technology Beijing 100144, P.R. China [email protected] Abstract Edwards curves are an alternate model for elliptic curves, which have attracted notice in cryptography. We give exact formulas for the number of Fq-isomorphism classes of Edwards curves and twisted Ed­ wards curves. This answers a question recently asked by R. Farashahi and I. Shparlinski. 1 1 Introduction Elliptic curves have been an object of much study in mathematics. Recall that an elliptic curve is a smooth projective genus 1 curve, with a given rational point. The traditional model for an elliptic curve has been the Weierstrass equation 2 3 2 Y + a1XY + a3Y = X + a2X + a4X + a6; where the ai are elements in some field F. While other models for elliptic curves have long been known, in the past few years there has been renewed interest in these alternate models. This attention has primarily come from the cryptographic community. In 2007, Edwards proposed a new model for elliptic curves [10]. Let F be a field with characteristic p 6= 2. These original Edwards curves, defined over F, are given by the equation 2 2 2 2 2 EE;c : X + Y = c (1 + X Y ); (1) with c 2 F and c5 6= c.
    [Show full text]
  • The Elliptic Curve Method and Other Integer Factorization Algorithms
    The Elliptic Curve Method and Other Integer Factorization Algorithms John Wright April 12, 2012 Contents 1 Introduction 2 2 Preliminaries 3 2.1 Greatest common divisors and modular arithmetic . 3 2.2 Basic definitions and theorems . 6 2.3 RSACryptosystem........................ 9 3 Factorization Algorithms 11 3.1 TheSieveofEratosthenes . 11 3.2 TrialDivision ........................... 12 3.3 Fermat’sLittleTheorem . 13 3.4 PseudoprimeTest......................... 14 3.5 StrongPseudoprimeTest . 16 3.6 AmethodofFermat ....................... 17 3.7 TheQuadraticSieve . 20 3.8 Pollard Rho Factorization Method . 22 4 Elliptic curves 24 4.1 Additiononanellipticcurve . 28 4.2 Reduction of elliptic curves defined modulo N ......... 31 4.3 Reduction of curves modulo p .................. 33 4.4 Lenstra’s Elliptic Curve Integer Factorization Method . 34 4.5 TheECMintheprojectiveplane . 36 5 Improving the Elliptic Curve Method 38 5.1 MontgomeryCurves . 38 5.2 Addition for elliptic curves in Montgomery form . 42 5.3 Montgomery multiplication . 47 5.4 Recentdevelopments . 49 5.5 Conclusion ............................ 50 1 Chapter 1 Introduction The Fundamental Theorem of Arithmetic, first proved by Gauss [2], states that every positive integer has a unique factorization into primes. That is, for every positive integer N, a1 a2 ak N = p1 p2 ...pk where the pi’s are distinct primes and each ai is a positive integer. This paper is motivated by a computational question: given an arbitrary integer N, how might we find a non-trivial factor of N? That is, a factor of N other than N and 1. ± ± While it is computationally easy to multiply numbers together, factor- ing a general integer is “generally believed to be hard” [4].
    [Show full text]
  • Elliptic Curve Factorization Method (ECM), Introduced by Hendrik Lenstra [4], a Heuristically Subexponential Running
    18.783 Elliptic Curves Spring 2013 Lecture #12 03/19/2013 We now consider our first practical application of elliptic curves: factoring integers. Before presenting the elliptic curve method (ECM) for factoring integers, we first present an older algorithm of Pollard that motivates the ECM approach. 12.1 Pollard p − 1 method In 1974, Pollard introduced a randomized (Monte Carlo) algorithm for factoring integers [6]. It makes use of a smoothness parameter B. Algorithm 12.1 (Pollard p − 1 factorization). Input: An integer N to be factored and a smoothness bound B. Output: A proper divisor of N or failure. 1. Pick a random integer a 2 [1;N − 1]. 2. If d = gcd(a; N) is not 1 then return d. 3. Set b = a and for each prime ` ≤ B: a. Set b = b`e mod N, where `e−1 < N ≤ `e. b. If d = gcd(b − 1;N) is not 1 then return d if d < N or failure if d = N. 4. Return failure Rather than using a fixed bound B, we could simply let the algorithm keep running through primes ` until it either succeeds or fails in step 3b. But in practice one typically uses a very small smoothness bound B and switches to a different algorithm if the p − 1 method fail. In any case, it is convenient to have B fixed for the purposes of analysis. Theorem 12.2. Let p and q be prime divisors of N, and let `p and `q be the largest prime divisors of p − 1 and q − 1, respectively.
    [Show full text]
  • Montgomery Curves and Their Arithmetic the Case of Large Characteristic fields
    Montgomery curves and their arithmetic The case of large characteristic fields Craig Costello · Benjamin Smith A survey in tribute to Peter L. Montgomery Abstract Three decades ago, Montgomery introduced a new elliptic curve model for use in Lenstra's ECM factorization algorithm. Since then, his curves and the algorithms associated with them have become foundational in the implementation of elliptic curve cryptosystems. This article surveys the theory and cryptographic applications of Montgomery curves over non-binary finite fields, including Montgomery's x-only arithmetic and Ladder algorithm, x- only Diffie–Hellman, y-coordinate recovery, and 2-dimensional and Euclidean differential addition chains such as Montgomery's PRAC algorithm. Keywords Montgomery curve · Montgomery ladder · elliptic curve cryptog- raphy · scalar multiplication 1 Introduction Peter L. Montgomery's landmark 1987 paper Speeding the Pollard and elliptic curve methods of factorization [38] introduced what became known as Mont- gomery curves and the Montgomery ladder as a way of accelerating Lenstra's ECM factorization method [33]. However, they have gone on to have a far broader impact: while remaining a crucial component of modern factoring software, they have also become central to elliptic curve cryptography. Consider the following situation: let q be a prime power and let E be an elliptic curve over Fq, with group law ⊕, identity point O, and negation map . We have scalar multiplication endomorphisms on E defined by [k]: P 7−! P ⊕ · · · ⊕ P | {z } k times Craig Costello Microsoft Research, USA E-mail: [email protected] Benjamin Smith INRIA and Laboratoire d'Informatique de l'Ecole´ polytechnique (LIX), France E-mail: [email protected] 2 Craig Costello, Benjamin Smith for every k in Z (with [−k]P := [k]( P )).
    [Show full text]
  • CRYPTREC Review of Eddsa CRYPTREC EX-3003-2020
    CRYPTREC EX-3003-2020 CRYPTREC Review of EdDSA Steven D. Galbraith Mathematics Department, University of Auckland, Auckland, New Zealand. [email protected] 1 Executive summary The EdDSA signature scheme is a digital signature based on the Elliptic Curve Discrete Logarithm Problem (ECDLP). It was proposed by Bernstein, Duif, Lange, Schwabe and Yang in 2012 [18]. It builds on a long line of discrete logarithm based signature schemes, including Elgamal, Schnorr, DSA, and ECDSA. The security of signature schemes of this type is well-understood, and elliptic curve cryptography is a mature field. My conclusions and opinions: 1. EdDSA is a good design for a signature scheme (except perhaps for the key clamping, see Section 6.1, which seems to cause more difficulties than it provides benefits). 2. EdDSA is more closely related to Schnorr signatures than ECDSA, and so enjoys many of the rigorous security guarantees that are known for Schnorr signatures, including recent work on tight security proofs. 3. Deterministic signatures solve some of the security problems of discrete log signatures, but constant time imple- mentation is still critical in many settings. 4. EdDSA is superior to ECDSA when doing batch verification of a large number of signatures. 5. Curve 25519 provides a high level of security for the next 10-20 years, and 448-bit keys (such as in Ed448) are over-conservative and not recommended. 6. It is unlikely that quantum computers capable of solving 256-bit ECDLP instances can be built within the next 10 years. 7. I am confident that EdDSA using Curve25519 is a good signature scheme for use up to 2030.
    [Show full text]
  • Area-Time Efficient Hardware Architecture for Signature Based on Ed448 2943
    2942 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 8, AUGUST 2021 Area-Time Efficient Hardware Architecture for Signature Based on Ed448 Mojtaba Bisheh-Niasar , Reza Azarderakhsh , and Mehran Mozaffari Kermani , Senior Member, IEEE Abstract—In this brief, we proposed a highly-optimized FPGA- 521-bit, employing a hardware/software co-design approach. based implementation of the Ed448 digital signature algorithm. Additionally, a multi-core FPGA scheme was presented in [4] Despite significant progress in elliptic curve cryptography (ECC) with an arbitrary prime modulus up to 528-bit. It was applied implementations, Ed448 hardware architecture, to the best of our over different curves, including NIST curves, Brainpool P512 knowledge, has not been investigated in the literature. In this r1, and SEC P256 k1. However, leakage exploitation using work, we demonstrate a high throughput while maintaining low resource architecture for Ed448 by employing a new combined horizontal attacks was not studied in these works. algorithm for refined Karatsuba-based multiplier with precise Recently, few works implement Curve448 scalar multiplica- scheduling. Furthermore, a compact distributed memory unit is tion on FPGA. The authors in [5] proposed a high-performance developed to increase speed while keeping the area low. Our architecture employing schoolbook multiplication. It has been variable-base-point Ed448 architecture performs 327 signatures extended in [6] by adding some countermeasures to pro- and 189 verifications per second at a notably higher security level tect against side-channel analysis (SCA) attacks. The work of 224 bits, using not more than 6,617 Slices and 16 DSPs on a of [7] proposed a compact and fast point multiplication Xilinx Artix-7 FPGA.
    [Show full text]
  • Edwards Curve Points Counting Method and Supersingular Edwards and Montgomery Curves III a PREPRINT
    EDWARDS CURVE POINTS COUNTING METHOD AND SUPERSINGULAR EDWARDS AND MONTGOMERY CURVES III A PREPRINT Ruslan Skuratovskii1 [email protected], [email protected] National Technical University of Ukraine ”KPI im. Igor Sikorsky ”, Institute of Cybernetics of NASU. April 23, 2020 ABSTRACT We consider algebraic affine and projective curves of Edwards [3, 9] over the finite field Fpn . It is known that many modern cryptosystems [11] can be naturally transformed into elliptic curves [5]. We research Edwards algebraic curves over a finite field, which are one of the most promising supports of sets of points which are used for fast group operations [1]. We construct a new method for counting the order of an Edwards curve over a finite field. It should be noted that this method can be applied to the order of elliptic curves due to the birational equivalence between elliptic curves and Edwards curves. We not only find a specific set of coefficients with correspondingfield characteristics for which these curves are supersingular, but we additionally find a general formula by which one can determine whether a curve Ed[Fp] is supersingular over this field or not. The embedding degree of the supersingular curve of Edwards over Fpn in a finite field is inves- tigated and the field characteristic, where this degree is minimal, is found. A birational isomor- phism between the Montgomery curve and the Edwards curve is also constructed. A one-to-one correspondence between the Edwards supersingular curves and Montgomery supersingular curves is established. The criterion of supersingularity for Edwards curves is found over Fpn .
    [Show full text]