ECOLOGICAL IMPACT of MYRTLE RUST (Austropuccinia Psidii) in a WET SCLEROPHYLL FOREST

Total Page:16

File Type:pdf, Size:1020Kb

ECOLOGICAL IMPACT of MYRTLE RUST (Austropuccinia Psidii) in a WET SCLEROPHYLL FOREST ECOLOGICAL IMPACT OF MYRTLE RUST (Austropuccinia psidii) IN A WET SCLEROPHYLL FOREST Santiago Diaz Torres Bachelor of Biological Sciences Submitted in fulfilment of the requirements for the degree of Master of Philosophy School of Biological, and Environmental Sciences Faculty of Science and Engineering Queensland University of Technology 2021 1 Keywords Acmena smithii, Archirhodomyrtus beckleri, Austropuccinia psidii, canopy gap fraction, Decaspermum humile, ecological communities, ecological impact, ecological populations, ecological succession, forest structure, Gossia hillii, invasive species, Myrtaceae, myrtle rust, Rhodamnia maideniana, pathogen spillover, plant-pathogenic fungi, plant–soil feedback, species composition, specific leaf area, light availability, soil nutrients, South East Queensland, Tallebudgera Valley, vegetation monitoring program, wet sclerophyll forest Ecological impact of myrtle rust (Austropuccinia psidii) in a wet sclerophyll forest 2 Abstract Myrtle rust is an infection caused by Austropuccinia psidii, a fungal pathogen that threatens the persistence of plant species within the Myrtaceae family. Myrtle rust was first detected in Australia in April 2010 on the central coast of New South Wales. Myrtle rust originates from South America and has now also spread to other regions where Myrtaceae species are native, including New Caledonia, South Africa, Indonesia, Singapore and New Zealand. The Myrtaceae family is the largest plant family in Australia with over 2250 species and 70 genera. The species of this family make up a large proportion of iconic Australian forests such as dry and wet sclerophyll forests. The importance of studying the ecological impacts of myrtle rust in wild populations has been highlighted in multiple studies in Australia. Understanding its effects in the field will help in the prioritisation of species and environments at risk and understand how plant communities will change over time in response to myrtle rust infection. Previous studies of wet sclerophyll forests have found high infection rates of myrtle rust on susceptible Myrtaceae species growing in the midstory and understory canopies of the forests. However, given that the arrival of myrtle rust in Australia is relatively recent, the impact of myrtle rust on populations over time and on plant community composition and key resources, such as light availability, is equivocal. In this study, I evaluated the impact of myrtle rust on a wet sclerophyll forest in the Tallebudgera Valley in South East Queensland and compared recent survey results with previous survey results, recorded over multiple time periods since 2016. I examined how increasing infection rates of myrtle rust has affected the survival of five species of Myrtaceae: Acmena smithii, Archirhodomyrtus beckleri, Decaspermum humile, Gossia hillii and Rhodamnia maideniana. I also studied how tree mortality in the midstory of the forest canopy changes the resource availability and plant community composition in the understory. Archirhodomyrtus beckleri and Decaspermum humile are tree species that make up the overstory of the canopy of the forest. Acmena smithii, Gossia hillii and Rhodamnia maideniana can grow to shape the midstory of the forest but are shrub species that are more likely to be found in the understory. I regard these are five Myrtaceae species as key species for the forest because they create a complex setting for the community and ecosystem dynamics. Having these five key species a fundamental role in the forest by altering light Ecological impact of myrtle rust (Austropuccinia psidii) in a wet sclerophyll forest 3 dynamics in the forest and bringing nourishment to animal species through edible fruits that are consumed by birds and mammals. Populations of the five Myrtaceae species that make up the structure of the forest decreased over the four years of recorded infection. I used Kaplan–Meier plots to estimate the probability of survival of the five most abundant Myrtaceae species, based on data collected from three time periods over four years. I then used Markov models to predict their probability of survival for the next three years. Over the next three years, predictions from this research suggest that populations of Archirhodomyrtus beckleri and Decaspermum humile may become locally extinct (extirpation), Gossia hillii has a low probability of survival as well, but Acmena smithii and Rhodamnia maideniana have higher probabilities of survival. I used specific leaf area (SLA) as a proxy measure of the physiological adaptations of populations to the local environment that could predict susceptibility to myrtle rust. This is because leaves are usually the common structure associated with infection by A. psidii. I measured SLA in the five Myrtaceae key species described above. I did not find a significant correlation between high SLA in species with higher mortality rates. Although the overall trend was promising, further research should be conducted in different environments and with more species and samples to understand whether SLA is a good predictor of susceptibility to myrtle rust. I hypothesised that the high mortality rates found at these sites in the mid-canopy and understory would result in more light reaching the forest floor and greater soil nutrient levels. I measured canopy gap fraction as a surrogate measure of light availability for the forest floor and soil nutrients associated with plant decomposition in regions of the forest with and without mortality. I found a significant variance between canopy gap fractions but no significant difference in soil nutrients. I surveyed the understory species composition of the forest. I found that 11 non-native species, seven of them regarded as invasive because of high impacts and/or spread, were present on the forest floor (e.g. Ageratina adenophora and Ochna serrulata). However, I did not find a significant correlation between quadrats that showed higher mortality because of myrtle rust and the cover of invasive species in the understory. In this thesis, I aimed to understand the impact of myrtle rust over four years of recorded infection on five prominent Myrtaceae species in a wet sclerophyll forest and the Ecological impact of myrtle rust (Austropuccinia psidii) in a wet sclerophyll forest 4 subsequent effects that increasing mortality caused by myrtle rust might have on the plant community composition of the ground cover. I found that myrtle rust affects the composition of the forest over time by killing prominent species in the mid- and understory and this mortality could impact on longer-term community assembly by changing light availability reaching the forest floor. However, I did not record a significant shift in plant composition on the forest floor and soil nutrient conditions, which may be explained by the short period (four years) of recorded infections. Most studies research the impacts of invasive species and in particular invasive pathogens after 10 to 30 years of infection. This study represents an important interim examination of how invasive pathogens impact in the early stages of arrival and an opportunity to understand how resultant processes begin to shift. The significant differences found in the canopy gaps because of mortality in the mid- and understory suggest that changes in composition and other resource availability may become more pronounced over time. Annual follow-up studies are highly recommended to document the impact on populations not just after 10 years but every couple of years so that timelines of impact can be better understood and the timing of management interventions optimised. Ecological impact of myrtle rust (Austropuccinia psidii) in a wet sclerophyll forest 5 Table of Contents Keywords ………………………………………………………………………….….………1 Abstract …………………………………………………………………………….….……...2 Table of Contents ……………………………………………………………………..………5 List of Figures ……………………………………………………………………….…….….8 List of Tables ……………………………………………………………………….…….….11 Statement of Original Authorship ……………………………………………….…………..12 Acknowledgements ………………………………………………………………….……....13 Chapter 1: Introduction …………………………………………………………….…….. 14 1.1 Background ………………………………………………………………….………14 1.2 Literature review …………………………………………………………………….15 1.2.1 Value of the Myrtaceae family in Australia …………………………………………16 1.2.2 Wet sclerophyll Forest and the Tallebudgera Valley ………………………………. 17 1.2.3 Ecological value of five focal Myrtaceae species of the Tallebudgera Valley wet sclerophyll forest …………………………………………………………………… 19 1.2.4 A. psidii life cycle and susceptibility categorisation ……………………………….. 23 1.2.5 Plant traits and A. psidii ………………………………………………...………….. 24 1.2.6 Canopy structure and light dynamics ………………………………………………. 25 1.2.7 Impact of Austropuccinia psidii on keys species of a wet sclerophyll forest…….….26 1.2.8 Impact of mortality on light availability and community assembly of wet sclerophyll forests…………………………………………………...………..……. 28 1.3 Research scope ……………………………………………………………..………. 30 1.4 Data chapter outline …………………………………………………………....…….30 Chapter 2: Population impact: Impact of Austropuccinia psidii on keys species of a wet sclerophyll forest over time ……..…………………………………………………………32 2.1 Aims and objectives …………………………………………………………..……. 32 2.2 Research design ……………………………………………………….……………. 33 2.2.1 Assessing mortality (percentage of dead trees) in focal Myrtaceae populations …... 33 2.2.2 Specific leaf area measurements and susceptibility classification …………...….…..34 2.3 Analysis ……………………………………………………………………..……….35
Recommended publications
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • MEDIA FACTSHEET Habitat Enhancement Efforts at Pulau Ubin
    MEDIA FACTSHEET Habitat enhancement efforts at Pulau Ubin Reforestation efforts at Tanjong Tajam, Pulau Ubin 100 native trees were planted at Tanjong Tajam, Pulau Ubin as part of habitat enhancement efforts on 23 August 2014. Minister of State for National Development, Desmond Lee, planted a Pteleocarpa lamponga. About the Pteleocarpa lamponga The Pteleocarpa lamponga is a medium- sized tree with a bushy, open crown that can grow to more than 30m tall. Its leaves have a leathery texture. Bright yellow flowers are found in clusters at the ends of leafy twigs. Native to Singapore, and also found in Thailand, Malaysia, Sumatra and Borneo, the Pteleocarpa lamponga is presumed to be extinct in the wild in Singapore. Page 1 of 9 Aphanamixis polystachya (Common names: Pasak Lingga, Amoora, Cikih, Kasai Paya, Kulim Burung) Growing up to 20m tall, the leaves of the Aphanamixis polystachya are oblong and leathery. Its sweetly scented flowers are cream, yellow or bronze in colour. Oil extracted from its seeds have medicinal properties and used externally for rheumatism. However, its fruits are poisonous. The Aphanamixis polystachya is classified as endangered in Singapore. Erythroxylum cuneatum (Common names: Wild Cocaine, Baka, Beluntas Bukit, Cinatamula, Inai Inai, Mahang Wangi, Medang Lenggundi, Medang Wangi) Page 2 of 9 Growing up to 45m tall, the Erythroxylum cuneatum Has flattened green twigs. Its tiny flowers grow in clusters of 1-8, and are white to light green in colour. Its fruits are bright red when ripe, and are eaten by mammals and porcupines. The Erythroxylum cuneatum is classified as common in Singapore and can be found in Changi, Pulau Tekong, Pulau Ubin and St John’s Island.
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Species List Alphabetically by Common Names
    SPECIES LIST ALPHABETICALLY BY COMMON NAMES COMMON NAME SPECIES COMMON NAME SPECIES Actephila Actephila lindleyi Native Peach Trema aspera Ancana Ancana stenopetala Native Quince Guioa semiglauca Austral Cherry Syzygium australe Native Raspberry Rubus rosifolius Ball Nut Floydia praealta Native Tamarind Diploglottis australis Banana Bush Tabernaemontana pandacaqui NSW Sassafras Doryphora sassafras Archontophoenix Bangalow Palm cunninghamiana Oliver's Sassafras Cinnamomum oliveri Bauerella Sarcomelicope simplicifolia Orange Boxwood Denhamia celastroides Bennetts Ash Flindersia bennettiana Orange Thorn Citriobatus pauciflorus Black Apple Planchonella australis Pencil Cedar Polyscias murrayi Black Bean Castanospermum australe Pepperberry Cryptocarya obovata Archontophoenix Black Booyong Heritiera trifoliolata Picabeen Palm cunninghamiana Black Wattle Callicoma serratifolia Pigeonberry Ash Cryptocarya erythroxylon Blackwood Acacia melanoxylon Pink Cherry Austrobuxus swainii Bleeding Heart Omalanthus populifolius Pinkheart Medicosma cunninghamii Blue Cherry Syzygium oleosum Plum Myrtle Pilidiostigma glabrum Blue Fig Elaeocarpus grandis Poison Corkwood Duboisia myoporoides Blue Lillypilly Syzygium oleosum Prickly Ash Orites excelsa Blue Quandong Elaeocarpus grandis Prickly Tree Fern Cyathea leichhardtiana Blueberry Ash Elaeocarpus reticulatus Purple Cherry Syzygium crebrinerve Blush Walnut Beilschmiedia obtusifolia Red Apple Acmena ingens Bollywood Litsea reticulata Red Ash Alphitonia excelsa Bolwarra Eupomatia laurina Red Bauple Nut Hicksbeachia
    [Show full text]
  • Table of Contents Below) with Family Name Provided
    1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens
    [Show full text]
  • 9 Costion Plant Endemism 133-166 PROOFS
    Micronesica 41(1): 131–164, 2009 Plant Endemism, Rarity, and Threat in Palau, Micronesia: A Geographical Checklist and Preliminary Red List Assessment 1 CRAIG M. COSTION Department of Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide SA 5001 [email protected] ANN HILLMANN KITALONG The Environment, Inc., P.O. Box 1696, Koror, Palau 96940 TARITA HOLM Palau Conservation Society/PALARIS, P.O. Box 1811, Koror, Palau, 96940 Abstract—An official checklist of the endemic plant species of Palau has been long awaited, and is presented here for the first time. For each species a substrate limitation, growth form, and relative abundance is listed. In addition an IUCN red list assessment was conducted using all available data. For over half of the endemic species there is insufficient data to provide a red listing status however an expected minimum number of threatened plants out of the total is inferred. Approximately 15% of Palau’s endemic plants are believed to be only known from the type collection and many more only known from a few collections. These taxa however may now be prioritized and targeted for future inventory and research. The taxonomic robustness of several of these taxa is questionable and it is expected that more endemic species will be lost to synonymy in the future. Previous estimations have significantly over-estimated the rate of plant endemism in Palau (e.g., 194). Here, 130 plants are recognized for Palau, making its level of plant endem- ism comparable to some of its neighboring Micronesian islands to the east, notably Guam and Pohnpei.
    [Show full text]
  • Species Selection Guidelines Tree Species Selection
    Species selection guidelines Tree species selection This section of the plan provides guidance around the selection of species for use as street trees in the Sunshine Coast Council area and includes region-wide street tree palettes for specific functions and settings. More specific guidance on signature and natural character palettes and lists of trees suitable for use in residential streets for each of the region's 27 Local plan areas are contained within Part B – Street tree strategies of the plan. Street tree palettes will be periodically reviewed as an outcome of street tree trials, the development of new species varieties and cultivars, or the advent of new pest or disease threats that may alter the performance and reliability of currently listed species. The plan is to be used in association with the Sunshine Coast Council Open Space Landscape Infrastructure Manual where guidance for tree stock selection (in line with AS 2303–2018 Tree stock for landscape use) and tree planting and maintenance specifications can be found. For standard advanced tree planting detail, maintenance specifications and guidelines for the selection of tree stock see also the Sunshine Coast Open Space Landscape Infrastructure Manual – Embellishments – Planting Landscape). The manual's Plant Index contains a comprehensive list of all plant species deemed suitable for cultivation in Sunshine Coast amenity landscapes. For specific species information including expected dimensions and preferred growing conditions see Palettes – Planting – Planting index). 94 Sunshine Coast Street Tree Master Plan 2018 Part A Tree nomenclature Strategic outcomes The names of trees in this document follow the • Trees are selected by suitably qualified and International code of botanical nomenclature experienced practitioners (2012) with genus and species given, followed • Tree selection is locally responsive and by the plant's common name.
    [Show full text]
  • Myrtle Rust Reviewed the Impacts of the Invasive Plant Pathogen Austropuccinia Psidii on the Australian Environment R
    Myrtle Rust reviewed The impacts of the invasive plant pathogen Austropuccinia psidii on the Australian environment R. O. Makinson 2018 DRAFT CRCPLANTbiosecurity CRCPLANTbiosecurity © Plant Biosecurity Cooperative Research Centre, 2018 ‘Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment’ is licenced by the Plant Biosecurity Cooperative Research Centre for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This Review provides background for the public consultation document ‘Myrtle Rust in Australia – a draft Action Plan’ available at www.apbsf.org.au Author contact details R.O. Makinson1,2 [email protected] 1Bob Makinson Consulting ABN 67 656 298 911 2The Australian Network for Plant Conservation Inc. Cite this publication as: Makinson RO (2018) Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment. Plant Biosecurity Cooperative Research Centre, Canberra. Front cover: Top: Spotted Gum (Corymbia maculata) infected with Myrtle Rust in glasshouse screening program, Geoff Pegg. Bottom: Melaleuca quinquenervia infected with Myrtle Rust, north-east NSW, Peter Entwistle This project was jointly funded through the Plant Biosecurity Cooperative Research Centre and the Australian Government’s National Environmental Science Program. The Plant Biosecurity CRC is established and supported under the Australian Government Cooperative Research Centres Program. EXECUTIVE SUMMARY This review of the environmental impacts of Myrtle Rust in Australia is accompanied by an adjunct document, Myrtle Rust in Australia – a draft Action Plan. The Action Plan was developed in 2018 in consultation with experts, stakeholders and the public. The intent of the draft Action Plan is to provide a guiding framework for a specifically environmental dimension to Australia’s response to Myrtle Rust – that is, the conservation of native biodiversity at risk.
    [Show full text]
  • Plants for Whitsunday Gardens
    Whitsunday Plants [email protected] Suitable for Gardens Ph: (07) 4945 0267 What are Local Native Plants? Native plants are also far less Local native plants are those that are indigenous to the likely than exotic (non-native) Whitsunday region. There are many local native plants plants to become that can be used instead of exotic (introduced) plants or environmental weeds. Native even those native to other parts of Australia. Wedelia (pictured left) does not have the invasive qualities of the similar in appearance Why Use Local Native Plants? declared weed Singapore Local native plants are often better adapted to local Daisy. conditions and also provide a natural food source for Wedelia spilanthoides animals, birds and insects. It is important to plant a Photo: C. Peterson variety of plants to supply nectar, fruit and seeds to native animals. Things to Consider When Planning Below: Cajanus Your Garden: reticulatus, a low, Where space is limited such as in household gardens, dense shrub provides seeds to native under power lines and near driveways and buildings, animals. there is a need to use plants that will not become a Photo: P. Alden menace to neighbours or damage infrastructure. It is important to consider the mature size of plants, including width, height and how extensive the roots systems will become. Above: Melicope elleryana provides nectar, and later seeds to native Figs in particular (Ficus species) should not be planted animals. Photo: D. Pepplinkhouse near infrastructure. There are attractive grasses, ground covers, small to medium shrubs and small trees with colourful flowers, wonderful aromas or unusual fruit.
    [Show full text]
  • Australian Nursery Industry Myrtle Rust Management Plan 2011
    Australian Nursery Industry Myrtle Rust (Uredo rangelii) Management Plan 2011 Developed for the Australian Nursery Industry Production Wholesale Retail Acknowledgements This Myrtle Rust Management Plan has been developed by the Nursery & Garden Industry Queensland (John McDonald - Nursery Industry Development Manager) for the Australian Nursery Industry. Version 01 February 2011 Photographs sourced from I&I NSW and Queensland DEEDI. Various sources have contributed to the content of this plan including: • Nursery Industry Accreditation Scheme Australia (NIASA) • BioSecure HACCP • Nursery Industry Guava Rust Plant Pest Contingency Plan • DEEDI Queensland Myrtle Rust Fact Sheets • I&I NSW Myrtle Rust Fact Sheets and Updates Preparation of this document has been financially supported by Nursery & Garden Industry Queensland, Nursery & Garden Industry Australia and Horticulture Australia Ltd. Published by Nursery & Garden Industry Australia, Sydney 2011 © Nursery & Garden Industry Queensland 2011 While every effort has been made to ensure the accuracy of contents, Nursery & Garden Industry Queensland accepts no liability for the information. For further information contact: John McDonald Industry Development Manager NGIQ Ph: 07 3277 7900 Email: [email protected] 2 Nursery Industry Myrtle Rust Management Plan - 2011 Table of Contents 1. Managing Myrtle Rust in the Australian Nursery Industry 4 2. Myrtaceae Family – Genera 5 3. Myrtle Rust (Uredo rangelii) 6 4. Known Hosts of Myrtle Rust in Australia 7 5. Fungicide Treatment 8 5.2 Myrtle Rust Fungicide Treatment Rotation Program 8 5.3 Fungicide Application 9 6. On-site Biosecurity Actions 9 6.1 Production Nursery 10 6.2 Propagation (specifics) 11 6.3 Greenlife Markets/Retailers 12 7. Monitoring and Inspection Sampling Protocol 12 7.1 Monitoring Process 12 7.2 Sampling Process 13 8.
    [Show full text]