Print This Article

Total Page:16

File Type:pdf, Size:1020Kb

Print This Article Mediterranean Marine Science Vol. 10, 2009 Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands BORG J.A. Department of Biology, University of Malta, Msida MSD2080 EVANS J. Department of Biology, University of Malta, Msida MSD2080 SCHEMBRI P.J. Department of Biology, University of Malta, Msida MSD2080 https://doi.org/10.12681/mms.127 Copyright © 2009 To cite this article: BORG, J.A., EVANS, J., & SCHEMBRI, P.J. (2009). Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands. Mediterranean Marine Science, 10(1), 131-136. doi:https://doi.org/10.12681/mms.127 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 08/10/2021 01:15:58 | Short Communication Mediterranean Marine Science Volume 10/1, 2009, 131-136 Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands J. A. BORG, J. EVANS and P. J. SCHEMBRI Department of Biology, University of Malta, Msida MSD2080, Malta e-mail: [email protected] Abstract The alien dendronotacean nudibranch Melibe viridis (Kelaart, 1858), a tropical Indo-Pacific species that seems to have been introduced by shipping into the Mediterranean via the Suez Canal, and which has established populations in Greece, Turkey, Cyprus, Montenegro, Croatia, NW Sicily, southern peninsular Italy and Djerba Island in the Gulf of Gabes, is recorded for the first time from Malta. A thriving popu- lation was observed on a soft sediment bottom at a depth of 18-20 m off the western coast of the island of Comino (Maltese Islands). It is suggested that this species was introduced into Malta due to a natural range expansion of surrounding populations. Keywords: Mollusca; Gastropoda; Nudibranchia; Dendronotina; Malta; Mediterranean; Dispersal. Introduction ta) was from the island of Cephalonia in the Ionian Sea in 1970 (MOOS- The dendronotacean nudibranch LEITNER, 1986) and it has also been Melibe viridis has a wide distribution in recorded from the coastal waters off the tropical Indo-West Pacific peninsular Greece, both the Ionian and (GOSLINER & SMITH, 2003); however Tyrrhenian coasts of Calabria, the Strait it is not known from the Red Sea of Messina, north-eastern Sicily, the (DESPALATOVI et al., 2002; ZE- island of Djerba in the Gulf of Gabes NETOS et al., 2004). It is also reported (CATTANEO-VIETTI et al., 1990), and from the Mediterranean where its occur- from the island of Hvar, Croatia in the rence has been interpreted as due to Adriatic Sea (maps and references in transport via shipping, most likely DESPALATOVI et al., 2002; ZENE- through the Suez Canal (ZENETOS et TOS et al., 2004). Further records are al., 2004). The first Mediterranean from eastern Sicily (SCUDERI & record of this species (as Melibe fimbria- RUSSO, 2003), the Gulf of Taranto Medit. Mar. Sci., 10/1, 2009, 131-136 131 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 08/10/2021 01:15:59 | (CARRIGLIO et al., 2004; MASTRO- Melibe viridis (Kelaart, 1858) (RUDMAN, TOTARO et al., 2004), Turkey (YOKES 2004; ZENETOS et al., 2008). & RUDMAN, 2004), Montenegro This note reports the presence of (JANCIC, 2004) and Cyprus (SANCHEZ Melibe viridis in Malta. VILLAREJO, 2007). Mediterranean records of Melibe Methods were originally referred to as Melibe fim- briata (Alder & Hancock, 1864), but as More than 10 individuals of Melibe pointed out by GOSLINER & SMITH viridis were encountered and pho- (2003) in their systematic review of the tographed by scuba divers on 30th genus, RUDMAN (1999) could find no September, 2008, during a marine benthic consistent characters for separating survey off the western coast of the island Melibe fimbriata from Melibe viridis, and of Comino (Maltese Islands; Fig. 1). The suggested that the former be considered site (centred on Latitude N36Æ 00’ a junior synonym of the latter. The 33.00"/Longitude E14Æ 19’ 27.05") where Mediterranean Melibe is now accepted as the nudibranch was recorded, is charac- Fig. 1: Maps showing the location of: (a) the Maltese Islands in the Mediterranean; (b) Comino in the Maltese Islands; and (c) the site (rectangle) off western Comino where the specimens of Melibe viridis were recorded. The contour lines in figure (c) indicate the water depth in metres. 132 Medit. Mar. Sci., 10/1, 2009, 131-136 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 08/10/2021 01:15:59 | terised by a gently sloping bottom of grav- teristic expanded buccal hood fringed with elly sand, with small stones and pebbles, at tentacles, the large cerata on the dorsal a water depth of 18-20 m. Extensive algal surface, which are dorso-ventrally flat- forests (on bedrock and large boulders), tened at their distal ends, and the together with meadows of Neptune Grass sheathed rhinophores (Fig. 2). Posidonia oceanica and of Lesser Neptune Grass Cymodocea nodosa, surround the Results and Discussion soft bottom where the nudibranch was encountered. The specimens observed occurred on There is no doubt that this nudibranch a bottom of gravelly sand with small is a species of Melibe, which, following stones and pebbles at a depth of 18-20 m. RUDMAN (2004), is referred to as Melibe Sparse patches of Cymodocea nodosa viridis. The animals had all the gross mor- were present in the vicinity but none of phological characteristics of this species as the specimens were recorded from described by GOSLINER & SMITH amongst the seagrass. The individuals (2003), particularly the extremely charac- observed ranged in length between 8 cm Fig. 2: Underwater photograph of a feeding Melibe viridis from western Comino, Maltese Islands, taken by Sarah Gauci Carlton on 30th September 2008 at a depth of 20 m. The animal in the photograph is about 16 cm long (© Ecoserv 2008). Medit. Mar. Sci., 10/1, 2009, 131-136 133 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 08/10/2021 01:15:59 | and 16 cm. A few solitary individuals were is unlikely that if it occurred in ports or observed, but six were aggregated togeth- yacht marinas or along coasts in the vicin- er within a 2 m2 area. The animals were ity of shipping lanes in the Maltese observed feeding by the characteristic Islands, it would have gone unnoticed, expansion and contraction of the buccal especially given the intense diving activity hood as described by THOMPSON & that takes place along practically all the CRAMPTON (1984), and creeping slowly accessible coastline of the islands. For this along the substratum. They did not react reason, the arrival and establishment of to the presence of the divers. this species is likely to have been fairly There seems to be a general consen- recent. sus that Melibe viridis was introduced into It is interesting to note that this is the the Mediterranean via shipping since it second alien opisthobranch that has been does not occur in either the Red Sea or discovered in the same general area (the the Levantine Sea, which is not what is channel between the islands of Malta and expected for Lessepsian immigrants that Gozo) within a few months in 2008. In have invaded the Mediterranean through July 2008, an individual of the anapsid the Suez Canal under their own power Aplysia dactylomela was photographed at (ZENETOS et al., 2004). GALIL (2006) Cirkewwa, which is only some 2 km dis- suggests that Melibe viridis was introduced tant from the site where Melibe viridis has via ships’ ballast. Within the Mediter- been recorded (SCHEMBRI, 2008). The ranean, the species seems to have spread significance of this is obscure, although it partly by range expansion from centres of may be pure coincidence. establishment (for example, the popula- tions around peninsular Italy) and partly Acknowledgements by internal transport via shipping (for example, the Croatian population). Thanks are due to Ms Sarah Gauci In the case of the Maltese population, Carlton (Ecoserv Ltd, Malta) for supply- although shipping may have been the vec- ing photographs of Melibe viridis from tor, this species may also have reached the Comino, and to Dr Argyro Zenetos (Hel- islands through natural dispersal from lenic Centre for Marine Research, nearby populations, either those in Greece) for providing information on the Tunisia or those on the eastern coast of distribution of the species. Sicily, or from as yet unreported popula- tions closer to the Maltese Islands. We References could find no information on the duration of the larval stage of Melibe viridis, howev- CARRIGLIO, D., FANELLI, G. & er, the veliger larvae of Melibe leonina RUBINO, F., 2004. First record of the metamorphose after 30-59 days in the alien gastropod Melibe fimbriata (Opis- plankton (RUDMAN, 2001); if Melibe tobranchia: Tethyidae) in the Taranto viridis is similar, this is ample time for lar- seas (Mediterranean Sea). Journal of val dispersal from known surrounding the Marine Biological Association of the populations. United Kingdom, 84: 1067-1068. The large size and bizarre morpholo- CATTANEO-VIETTI, R., CHEMELLO, gy of this animal makes it stand out and it R. & GIANNUZZI-SAVELLI, R., 134 Medit. Mar. Sci., 10/1, 2009, 131-136 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 08/10/2021 01:15:59 | 1990. Atlas of Mediterranean nudi- Available from http://www.seaslugfo- branchs. Roma, Italy: La Conchiglia; rum.net/factsheet.cfm?base=meliviri. 264pp. Retrieved: November 30, 2008. DESPALATOVIC’, M., ANTOLIC’, B. , RUDMAN, W.B., 2001 (Jan 12). Com- GRUBELIC’, I. & ULJEVIC’, A., ment on Re: Melibe from Alaska by 2002. First record of the Indo-Pacific William Cullen. [In] Sea Slug Forum. gastropod Melibe fimbriata in the Australian Museum, Sydney. Avail- Adriatic Sea. Journal of the Marine able from http://www.seaslugforum. Biological Association of the United net/find.cfm?id=3511.
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Spawning Aggregation of Melibe Viridis Kellart (1858) from Gulf of Kachchh – Western India
    International Journal of Scientific and Research Publications, Volume 4, Issue 3, March 2014 1 ISSN 2250-3153 Spawning aggregation of Melibe viridis Kellart (1858) from Gulf of Kachchh – Western India Dishant Parasharya1, Bhavik Patel2 1Research Coordinator (Corals) Gujarat Ecological Education and Research (GEER) Foundation, Gujarat. 2Research Scholar, The M.S. University of Baroda – Vadodara, Gujarat – India. Abstract- Opisthobranchs are the least studied group of animals vexilillifera Bergh, 1880 Promelibe mirifica Allan, 1932 Melibe in the phylum Mollusca in context to the Indian subcontinent. japonica Eliot, 1913) synonyms of Meliboea viridis Kelaart They are one of the best indicators of the reef resilience. Melibe (1858) and suggests retaining the name Melibe viridis (Kelaart, viridis Kellart (1858) belonging to subclass Opisthobranchia has 1858). been recorded from the reefs of Gulf of Kachchh only in the west Distribution of the species: Known from the Indian and coast of India. The current paper describes the first record of Western Pacific Oceans from Mozambique, Zanzibar, Sri Lanka, spawning aggregation of the species in the Gulf of Kachchh in India, Vietnam, Japan, Philippines and Australia. In the the western India. Meditteranean Sea it is found from Greece (Gosliner & Smith 2003). The record of M. viridis on the west coast of India is only Index Terms- Opisthobranchs, Mollusca, Melibe viridis, Gulf of from Gujarat coast which dates back in 1909 by Hornell and Kachchh, Western India, Spawning aggregation Eliot. However after that it was not reported till 2005 when Deomurari reported three specimens from the Bay of Poshitra. For rest of the India, this species is reported from Mandapam I.
    [Show full text]
  • Mediterranean Marine Science
    Mediterranean Marine Science Vol. 10, 2009 Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands BORG J.A. Department of Biology, University of Malta, Msida MSD2080 EVANS J. Department of Biology, University of Malta, Msida MSD2080 SCHEMBRI P.J. Department of Biology, University of Malta, Msida MSD2080 https://doi.org/10.12681/mms.127 Copyright © 2009 To cite this article: BORG, J., EVANS, J., & SCHEMBRI, P. (2009). Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands. Mediterranean Marine Science, 10(1), 131-136. doi:https://doi.org/10.12681/mms.127 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 21/02/2020 06:55:02 | Short Communication Mediterranean Marine Science Volume 10/1, 2009, 131-136 Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands J. A. BORG, J. EVANS and P. J. SCHEMBRI Department of Biology, University of Malta, Msida MSD2080, Malta e-mail: [email protected] Abstract The alien dendronotacean nudibranch Melibe viridis (Kelaart, 1858), a tropical Indo-Pacific species that seems to have been introduced by shipping into the Mediterranean via the Suez Canal, and which has established populations in Greece, Turkey, Cyprus, Montenegro, Croatia, NW Sicily, southern peninsular Italy and Djerba Island in the Gulf of Gabes, is recorded for the first time from Malta. A thriving popu- lation was observed on a soft sediment bottom at a depth of 18-20 m off the western coast of the island of Comino (Maltese Islands).
    [Show full text]
  • Prey Preference Follows Phylogeny: Evolutionary Dietary Patterns Within the Marine Gastropod Group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A
    Goodheart et al. BMC Evolutionary Biology (2017) 17:221 DOI 10.1186/s12862-017-1066-0 RESEARCHARTICLE Open Access Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A. Goodheart1,2* , Adam L. Bazinet1,3, Ángel Valdés4, Allen G. Collins2 and Michael P. Cummings1 Abstract Background: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA- Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. Results: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia).
    [Show full text]
  • Circadian Rhythms of Crawling and Swimming in the Nudibranch Mollusc Melibe Leonina
    University of New Hampshire University of New Hampshire Scholars' Repository Institute for the Study of Earth, Oceans, and Jackson Estuarine Laboratory Space (EOS) 12-1-2014 Circadian Rhythms of Crawling and Swimming in the Nudibranch Mollusc Melibe leonina Winsor H. Watson III University of New Hampshire, Durham, [email protected] James M. Newcomb University of New Hampshire, Durham Lauren E. Kirouac New England College Amanda A. Naimie New England College Follow this and additional works at: https://scholars.unh.edu/jel Recommended Citation Newcomb, J. M., L. E. Kirouac, A. A. Naimie, K. A. Bixby, C. Lee, S. Malanga, M. Raubach and W. H. Watson III. 2014. Circadian rhythms of crawling and swimming in the nudibranch mollusk Melibe leonina. Biol. Bull. 227: 263-273. https://doi.org/10.1086/BBLv227n3p263 This Article is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Jackson Estuarine Laboratory by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Reference: Biol. Bull. 227: 263–273. (December 2014) © 2014 Marine Biological Laboratory Circadian Rhythms of Crawling and Swimming in the Nudibranch Mollusc Melibe leonina JAMES M. NEWCOMB1,*, LAUREN E. KIROUAC1,†, AMANDA A. NAIMIE1,‡, KIMBERLY A. BIXBY2,§, COLIN LEE2, STEPHANIE MALANGA2,¶, MAUREEN RAUBACH2, AND WINSOR H. WATSON III2 1Department of Biology and Health Science, New England College, Henniker, New Hampshire 03242; 2Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824 Abstract.
    [Show full text]
  • A Tropical Atlantic Species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae)
    A peer-reviewed open-access journal ZooKeys 316:A tropical 55–66 (2013) Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae) 55 doi: 10.3897/zookeys.316.5452 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research A tropical Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae) Erika Espinoza1,†, Anne DuPont2,‡, Ángel Valdés1,§ 1 Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomo- na, California 91768, USA 2 4070 NW 7th Lane, Delray Beach, Florida 33445, USA † urn:lsid:zoobank.org:author:9B1ADF42-1CDF-4CAA-A2BB-0394695C2E96 ‡ urn:lsid:zoobank.org:author:F3469A4A-29CA-43AD-9663-1ECD09B067A1 § urn:lsid:zoobank.org:author:B5F56B28-F105-4537-8552-A2FE07E945EF Corresponding author: Ángel Valdés ([email protected]) Academic editor: Robert Hershler | Received 3 May 2013 | Accepted 1 July 2013 | Published 11 July 2013 urn:lsid:zoobank.org:pub:7F156A4D-1925-464C-A0D4-8E4B40241DA3 Citation: Espinoza E, DuPont A, Valdés Á (2013) A tropical Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae). ZooKeys 316: 55–66. doi: 10.3897/zookeys.316.5452 Abstract A new species of Melibe is described based on two specimens collected in Florida. This new species is well differentiated morphologically and genetically from other species of Melibe studied to date. The four residue deletions in the cytochrome c oxidase subunit 1 protein found in all previously sequenced tropical species of Melibe sequenced (and Melibe rosea) are also present in this new species. These deletions do not appear to affect important structural components of this protein but might have fitness implications. This paper provides the first confirmed record of Melibe in the tropical western Atlantic Ocean.
    [Show full text]
  • The Morphology of the Nudibranchiate Mollusc Melibe (Syn. Chioraera) Leonina (Gould) by H
    The Morphology of the Nudibranchiate Mollusc Melibe (syn. Chioraera) leonina (Gould) By H. P, Kjerschow Agersborg, B.S., M.S., M.A., Ph.D., Williams College, Williamstown, Massachusetts. With Plates 27 to 37. CONTENTS. PAGE I. INTRODUCTION ......-• 508 II. ACKNOWLEDGEMENTS ....... 509 III. ON THE STATUS OP CHIORAERA GOULD . • 509 IV. MELIBE LEONINA (S. CHIORAERA LEONINA GOUI-D) 512 1. The Head or Veil • .514 (1) The Cirrhi 515 (2) The Dorsal Tentacles or ' Rhinophores ' . 516 2. The Papillae or Epinotidia 521 3. The Foot 524 4. The Body-wall 528 (1) The Odoriferous Glands 528 (2) The Muscular System 520 5. The Visceral Cavity 531 6. The Alimentary Canal ...... 533 (1) The Buccal Cavity 533 a. Mandibles and Radula ..... 534 b. Buccal and Salivary Glands .... 535 (2) The Oesophagus 536 (3) The Stomach 537 a. Proventriculus ...... 537 6. Gizzard ....... 537 c. Pyloric Diverticulum ..... 541 (4) The Intestine 542 (5) The Liver 544 7. The Circulatory System 550 (1) The Pericardium ...... 551 (2) The Heart and the Arteries .... 553 (3) The Venous System 555 8. The Organs of Excretion ...... 555 (1) The Kidney 555 (2) The Ureter 556 (3) The Renal Syrinx 556 9. The Organs of Reproduction . .561 (1) The Hermaphrodite Gland, a New Type . 562 50S H. P. KJBRSCHOW AGEKSBORG PAGE (2) The Hermaphrodite Duct ..... 567 (3) The Oviduct 567 (4) The Ovispermatotheca ..... 568 (5) The Male Genital Duct 569 (6) The Mucous Gland 570 V. SUMMARY ......... 573 VI. LITERATI'HE CITED ........ 577 VII. NOTE TO EXPLANATION OF FIGURES .... 586 VIII. EXPLANATION OF PLATES 27-37 ..... 586 I. IXXUODUCTIOX.
    [Show full text]
  • Occurrence of the Alien Nudibranch Melibe Viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands
    Short Communication Mediterranean Marine Science Volume 10/1, 2009, 131-136 Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands J. A. BORG, J. EVANS and P. J. SCHEMBRI Department of Biology, University of Malta, Msida MSD2080, Malta e-mail: [email protected] Abstract The alien dendronotacean nudibranch Melibe viridis (Kelaart, 1858), a tropical Indo-Pacific species that seems to have been introduced by shipping into the Mediterranean via the Suez Canal, and which has established populations in Greece, Turkey, Cyprus, Montenegro, Croatia, NW Sicily, southern peninsular Italy and Djerba Island in the Gulf of Gabes, is recorded for the first time from Malta. A thriving popu- lation was observed on a soft sediment bottom at a depth of 18-20 m off the western coast of the island of Comino (Maltese Islands). It is suggested that this species was introduced into Malta due to a natural range expansion of surrounding populations. Keywords: Mollusca; Gastropoda; Nudibranchia; Dendronotina; Malta; Mediterranean; Dispersal. Introduction ta) was from the island of Cephalonia in the Ionian Sea in 1970 (MOOS- The dendronotacean nudibranch LEITNER, 1986) and it has also been Melibe viridis has a wide distribution in recorded from the coastal waters off the tropical Indo-West Pacific peninsular Greece, both the Ionian and (GOSLINER & SMITH, 2003); however Tyrrhenian coasts of Calabria, the Strait it is not known from the Red Sea of Messina, north-eastern Sicily, the (DESPALATOVI et al., 2002; ZE- island of Djerba in the Gulf of Gabes NETOS et al., 2004). It is also reported (CATTANEO-VIETTI et al., 1990), and from the Mediterranean where its occur- from the island of Hvar, Croatia in the rence has been interpreted as due to Adriatic Sea (maps and references in transport via shipping, most likely DESPALATOVI et al., 2002; ZENE- through the Suez Canal (ZENETOS et TOS et al., 2004).
    [Show full text]
  • Phylogenomic Analysis and Morphological Data Suggest Left-Right Swimming Behavior Evolved Prior to the Origin of the Pelagic Phylliroidae (Gastropoda: Nudibranchia)
    Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart & Heike Wägele Organisms Diversity & Evolution ISSN 1439-6092 Org Divers Evol DOI 10.1007/s13127-020-00458-9 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Organisms Diversity & Evolution https://doi.org/10.1007/s13127-020-00458-9 ORIGINAL ARTICLE Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia) Jessica A. Goodheart1 & Heike Wägele2 Received: 13 March 2020 /Accepted: 1 September 2020 # Gesellschaft für Biologische Systematik 2020 Abstract Evolutionary transitions from benthic to pelagic habitats are major adaptive shifts. Investigations into such shifts are critical for understanding the complex interaction between co-opting existing traits for new functions and novel traits that originate during or post-transition.
    [Show full text]
  • The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe Leonina and Tritonia Diomedea, and Their Impact on Gastropod Phylogeny
    RESEARCH ARTICLE The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny Joseph L. Sevigny1, Lauren E. Kirouac1¤a, William Kelley Thomas2, Jordan S. Ramsdell2, Kayla E. Lawlor1, Osman Sharifi3, Simarvir Grewal3, Christopher Baysdorfer3, Kenneth Curr3, Amanda A. Naimie1¤b, Kazufusa Okamoto2¤c, James A. Murray3, James 1* a11111 M. Newcomb 1 Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America, 2 Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America, 3 Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America ¤a Current address: Massachusetts College of Pharmacy and Health Science University, Manchester, New Hampshire, United States of America OPEN ACCESS ¤b Current address: Achievement First Hartford Academy, Hartford, Connecticut, United States of America ¤c Current address: Defense Forensic Science Center, Forest Park, Georgia, United States of America Citation: Sevigny JL, Kirouac LE, Thomas WK, * [email protected] Ramsdell JS, Lawlor KE, Sharifi O, et al. (2015) The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny. PLoS ONE 10(5): Abstract e0127519. doi:10.1371/journal.pone.0127519 The phylogenetic relationships among certain groups of gastropods have remained unre- Academic Editor: Bi-Song Yue, Sichuan University, CHINA solved in recent studies, especially in the diverse subclass Opisthobranchia, where nudi- branchs have been poorly represented. Here we present the complete mitochondrial Received: January 28, 2015 genomes of Melibe leonina and Tritonia diomedea (more recently named T.
    [Show full text]
  • Mechanisms of Satiation in the Nudibranch Melibe Leonina
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2015 Mechanisms of satiation in the nudibranch Melibe leonina Colin Lee University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Lee, Colin, "Mechanisms of satiation in the nudibranch Melibe leonina" (2015). Master's Theses and Capstones. 1043. https://scholars.unh.edu/thesis/1043 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. MECHANISMS OF SATIATION IN THE NUDIBRANCH MELIBE LEONINA BY COLIN LEE Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Zoology September, 2015 ii This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Zoology by: Thesis Director, Dr. Winsor H. Watson III, Professor of Zoology Dr. Leslie J. Curren, Professor of Zoology Dr. James M. Newcomb, Professor of Biology, New England College On July 28, 2015 iii Acknowledgements: I owe a debt of gratitude to a number of people, without whom this thesis would not have been possible. First, I want to thank my family for supporting me, and especially my parents for nurturing in me the joy in learning that eventually led me to pursue grad school.
    [Show full text]
  • Field Guide to the Marine Life of St
    Field Guide to the Marine Life of St. Eustatius By Niels Schrieken and Sylvia van Leeuwen (eds.) ISBN: 978-1508950585 The ANEMOON Foundation, Lisse, The Netherlands, December 2016 1 Authors: Floris Bennema, Jessica Berkel, Jaap de Boer, Front cover photos: Bert Hoeksema (Longsnout Sea- Kalli De Meyer, Glenn Faires, Adriaan Gmelig Meyling, horse Hippocampus reidi) and Marion Haarsma (all other Marion Haarsma, Mike Harterink, Susan J. Hewitt, Bert photos) Hoeksema, Eseld Imms, Sylvia van Leeuwen, Luna van Photo above: Marion Haarsma der Loos, Godfried van Moorsel, Niels Schrieken, Johan Back cover photo: Mark Yokoyama Stapel and Mark Yokoyama Citations Editors: Niels Schrieken and Sylvia van Leeuwen Please cite this book as follows: Schrieken, N. and Van Leeuwen, S.J., 2016 (Eds.). Field Editorial support: Susan J. Hewitt and Ed Subitzky guide to the marine life of St. Eustatius. ANEMOON Foundation, Lisse, the Netherlands. Photographers: Marco Faasse, Glenn Faires, Jaaziel García-Hernández, Marion Haarsma, Mike Harterink, © 2016 Stichting ANEMOON (ANEMOON Foundation), Bert Hoeksema, Yee Wah Lau, Sylvia van Leeuwen, Luna Lisse, The Netherlands. The photographers retain the van der Loos, Godfried van Moorsel, James Reimer, Niels copyrights for the photographs. No part of this book Schrieken, Frank R. Stokvis and James Thomas may be reproduced without prior written consent of the ANEMOON Foundation. Maps: Eseld Imms, DCNA The publication of this field guide is supported by the Layout: Niels Schrieken Prins Bernhard Cultuurfonds Caribisch Gebied The ANEMOON Foundation P.O. Box 29 2120 AA Lisse, The Netherlands [email protected] www.anemoon.org/eux 2 Contents Introduction to the marine life of St.
    [Show full text]