Light and Moisture Requirements for Selected Indoor Plants

Total Page:16

File Type:pdf, Size:1020Kb

Light and Moisture Requirements for Selected Indoor Plants Light and Moisture Requirements For Selected Indoor Plants The following list includes most of the indoor plants that you will be growing. This list contains information on how large the plant will get at maturity, which light level is best for good growth, how much you should be feeding your indoor plants and how much water is required for healthy growth. The list gives the scientific name and, in parenthesis, the common name. Always try to remember a plant by its scientific name, because some plants have many common names but only one scientific name. The following descriptions define the terms used in the following material. Light Levels Low - Minimum high level of 25-foot candles, preferred level of 75- to 200-foot candles. Medium - Minimum of 75- to 100-foot candles, preferred level of 200- to 500-foot candles. High - Minimum of 200-foot candles, preferred level of 500- to 1,000-foot candles. Very High - Minimum of 1,000-foot candles, preferred level of over 1,000-foot candles. Water Requirements Dry - Does not need very much water and can stand low humidity. Moist - Requires a moderate amount of water and loves some humidity in the atmosphere. Wet -- Usually requires more water than other plants and must have high humidity in its surroundings. Fertility General Rule - One teaspoon soluble house plant fertilizer per gallon of water or follow recommendations on package. Low - No application in winter or during dormant periods. Medium - Apply every other month during winter and every month during spring and summer. High - Apply every month during winter and twice each month during the spring and summer. MATURE LIGHT WATER NAME FERTILITY SIZE LEVEL REQUIREMENTS Aechmea fasciata pot plant medium medium moist (Bromeliad) Aeschynanthus- species pot, basket medium low moist (Lipstick Fine) Aglaonema commutatum pot plant low medium moist (Chinese evergreen) Aglaonema "Pseudobracteatum" pot plant low medium moist (Golden Aglaonema) Aglaonema roebelinii pot plant low medium moist (Pewter Plant) Aloe variegata pot plant very high low dry Aphelandra squarrosa (Zebra Plant) pot plant medium medium moist Araucaria excelsa tree, floor, high medium moist (Norfolk Island Pine) pot plant Asparagus sprengeri pot plant, medium high moist (Asparagus Fern) basket Aspidistra elatior pot plant low medium moist (Cast-Iron Plant) Begonias, other than pot plant, very high high moist metallica and rex basket Brassaia actinophylla tree, floor medium high dry (Schefflera) pot plant Bromeliads (many species) pot plant medium low moist Cactus (many species) pot plant very high low dry Calathea (many species) pot plant medium medium moist Chamaedorea elegans floor, pot low medium moist (Neanthe Bella Palm) plant Chamaedorea erumpens tree, floor low medium moist (Bamboo Palm) pot plant Chamerops humilis tree, floor high medium moist (European Fan Palm) plant Chlorophytum elatum pot, basket high medium moist (Spider Plant) Cissus antarctica pot plant, medium- high moist (Kangaroo Vine) basket high Cissus rhombifolia pot plant, medium medium dry (Grape Ivy) basket Citrus mitis medium- pot plant high dry (Calamondin) high Codiaeum species medium- pot plant very high dry (Croton) hgih pot plant, Coleus blumei very high high wet basket pot plant, medium- Columnea species medium moist basket high Crassula argentea high pot plant very dry (Jade Plant) medium Dieffenbachia amonena floor, pot medium medium dry (Dumb Cane) plant Dieffenbachia "Exotica" pot plant medium medium dry (Dumb Cane) Dizygotheca elegantissima floor, pot high medium moist (Spider Aralia) plant Dracaena deremensis floor, pot medium medium moist (Green Dracena) plant Dracaena dermensis "Warneckei" pot plant medium medium moist (White Striped Dracaena) Dracaena fragrans floor, pot massangeana low medium moist plant (Corn Plant) Dracaena marginata tree, floor medium medium moist (Dragon Tree) plant medium- Dracaena godseffiana pot plant, very high moist high Episcia species pot plant, medium- very high moist (Flame Violet) basket high Eriobotrya japonica tree high medium moist (Japanese Loquat) floor, pot medium- Fatsia japonica (Japanese Aralia) medium moist plant high Fatshedera lizei floor, pot medium- mediumt moist (Tree Ivy) plant high Ficus benjamina "exotica" tree medium medium moist (Weeping Java Fig) Ficus elastica "Decora" tree, florr, medium medium moist (Rubber Plant) pot plant Ficus lyrata tree, floor medium medium moist (Fiddle Leaf fig) plant Hedera helix pot, basket high medium moist (English Ivy) Howea forsteriana tree, floor low medium moist (Kentia Palm) plant Ficus philippinensis tree, floor medium medium moist (Philippine Fig) plant Ficus retusa nitida tree medium medium moisti (India Laurel) Gynura species pot, basket medium medium moist (Purple Passion Plant) Hoya carnosa pot plant, medium low dry (Wax Plant) basket Ligustrum lucidum tree, floor medium medium dry (Wax Leaf Privet) plant Maranta leuconeura pot plant, medium medium moist (Prayer Plant) basket Monstera deliciosa pot, floor medium medium moist (Split Leaf Philodendron) plant Nephrolepis exaltata bostoniensis) pot plant medium medium moist (Boston Fern) Orchids (many species) pot plant very high medium moist/dry Pandanus veitchii pot, floor medium medium moist (Screw Pine) plant Pelargonium species pot plant, very high high dry (Geranium) basket Peperomia carperata pot plant, low medium dry (Emerald Ripple) basket pot plant, Peperomia (many specimens) low medium dry( basket Philodendron hybrida floor, pot medium medium moist (Self-Heading Philodendron) plant Philodendron oxycardium pot plant, low medium dry (Heartleaf Philodendron) basket Phoenix roebelenii floor, pot medium medium wet (Dwarf Date Palm) plant Pilea species (Aluminum and plant pot high high moist Artiller Plant, etc.) Pittosporum tobira floor, pot high medium dry (Mock Orange) plant Plectranus species pot plant high high moist (Swedish Ivy, etc.) Pleomele reflexa floor plant medium medium wet (Green Pleomele) Podocarpus macrophylla tree, floor, high medium moist "Maki" (Podocarpus) pot plant Polyscias guilfoylei floor, pot medium medium moist (Parlsey Aralia) plant Rhaphidophora pot plant, low medium moist (Pothos - Devil's Ivy) basket Rhapis excelsa tree, floor medium medium wet (Lady Palm) plant Saintpaulia species pot plant (African Violets) Sansevieria species (Snake Plant or Mother-in-Law's pot, floor low low moist Tongue) Sinningia species medium- pot plant very high moist (Gloxinia) high Spathiphyllum clevelandii pot plant medium medium dry "Mauna Loa" Syngonium podophyllus pot plant, low medium moist (Nephthytis) basket Tradescantia species pot plant, medium medium moist (Wandering Jew) basket Zygocactus truncactus pot plant, high medium moist/dry (Christmas Cactus) basket .
Recommended publications
  • Indoor Plants Or Houseplants
    Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins.
    [Show full text]
  • Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
    Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al.
    [Show full text]
  • 197-1572431971.Pdf
    Innovare Journal of Critical Reviews Academic Sciences ISSN- 2394-5125 Vol 2, Issue 2, 2015 Review Article EPIPREMNUM AUREUM (JADE POTHOS): A MULTIPURPOSE PLANT WITH ITS MEDICINAL AND PHARMACOLOGICAL PROPERTIES ANJU MESHRAM, NIDHI SRIVASTAVA* Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India Email: [email protected] Received: 13 Dec 2014 Revised and Accepted: 10 Jan 2015 ABSTRACT Plants belonging to the Arum family (Araceae) are commonly known as aroids as they contain crystals of calcium oxalate and toxic proteins which can cause intense irritation of the skin and mucous membranes, and poisoning if the raw plant tissue is eaten. Aroids range from tiny floating aquatic plants to forest climbers. Many are cultivated for their ornamental flowers or foliage and others for their food value. Present article critically reviews the growth conditions of Epipremnum aureum (Linden and Andre) Bunting with special emphasis on their ethnomedicinal uses and pharmacological activities, beneficial to both human and the environment. In this article, we review the origin, distribution, brief morphological characters, medicinal and pharmacological properties of Epipremnum aureum, commonly known as ornamental plant having indoor air pollution removing capacity. There are very few reports to the medicinal properties of E. aureum. In our investigation, it has been found that each part of this plant possesses antibacterial, anti-termite and antioxidant properties. However, apart from these it can also turn out to be anti-malarial, anti- cancerous, anti-tuberculosis, anti-arthritis and wound healing etc which are a severe international problem. In the present study, details about the pharmacological actions of medicinal plant E. aureum (Linden and Andre) Bunting and Epipremnum pinnatum (L.) Engl.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Feeding Damage of the Introduced Leafhopper Sophonia Rufofascia (Homoptera: Cicadellidae) to Plants in Forests and Watersheds of the Hawaiian Islands
    POPULATION AND COMMUNITY ECOLOGY Feeding Damage of the Introduced Leafhopper Sophonia rufofascia (Homoptera: Cicadellidae) to Plants in Forests and Watersheds of the Hawaiian Islands VINCENT P. JONES, PUANANI ANDERSON-WONG, PETER A. FOLLETT,1 PINGJUN YANG, 2 3 DAPHNE M. WESTCOT, JOHN S. HU, AND DIANE E. ULLMAN Department of Entomology, University of Hawaii at Manoa, Honolulu, HI 96822 Environ. Entomol. 29(2): 171Ð180 (2000) ABSTRACT Experiments were performed to determine the role of the leafhopper Sophonia rufofascia (Kuoh & Kuoh) in damage observed on forest and watershed plants in the Hawaiian Islands. Laboratory manipulation of leafhopper populations on Þddlewood, Citharexylum spinosum L., caused interveinal chlorosis and vein browning on young fully expanded leaves similar to that observed on leafhopper infested plants seen in the Þeld and necrosis on older leaves. Field studies with caged “uluhe” fern, Dicranopteris linearis (Burman), demonstrated that frond veins turned brown within2dofleafhopper feeding; and by 141 d after feeding, an average of 85% of the surface area of the fronds were necrotic compared with only 12% necrosis in untreated cages. Field trials with stump-cut Þretree, Myrica faya Aiton, were performed to determine the effect of leafhopper feeding on new growth. Our studies showed that the new growth in exclusion cages had signiÞcantly greater stem length and diameter, a higher number of nodes, fewer damaged leaves, and almost twice as much leaf area compared with plants caged but with the sides left open to permit leafhopper access. Microscopic examination of sections through damaged areas of several leafhopper host plants showed vascular bundle abnormalities similar to those associated with hopperburn caused by potato leafhopper, Empoasca fabae (Harris), feeding on alfalfa.
    [Show full text]
  • PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest
    PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest Communities Table of Contents (click to go to page) HCCREMS Mapping ....................................................................... 3 Field Data Sheet ............................................................................. 4 Which of the following descriptions best describes your site? ................................................................ 5 Which plant community is it? .......................................................... 9 Rainforest communities of the Lower Hunter .................................. 11 Common Rainforest Species of the Lower Hunter ........................................................................ 14 A picture guide to common rainforest species of the Lower Hunter ........................................................... 17 Weeding of Rainforest Remnants ................................................... 25 Rainforest Regeneration near Black Jacks Point ............................ 27 Protection of Rainforest Remnants in the Lower Hunter & the Re-establishment of Diverse, Indigenous Plant Communities ... 28 Guidelines for a rainforest remnant planting program ..................... 31 Threatened Species ....................................................................... 36 References ..................................................................................... 43 Acknowledgements......................................................................... 43 Image Credits ................................................................................
    [Show full text]
  • Some Notes on Philodendron Hybrids
    WEST AND MILLER: PHILODENDRON HYBRIDS 343 Spray all plantings regularly or apply zineb 7. Dust corms immediately after they are dust (6 percent active) when spraying can cleaned with 10% captan dust, or dip for 15 not be carried out. minutes in 12 lb. captan 50W (Orthocide) per 2. Spray twice weekly after plants are in 100 gal. Before planting, dip the corms in jured by frost or chemicals, or after the disease Dowicide B or in N.I. Ceresan solution as appears on the plants. recommended for Fusarium control. Use a 3. After the disease appears, spray or dust wetting agent such as Triton X-100 in the the spikes after each heavy rain in addition to dips. the regular two sprayings each week. Con LITERATURE CITED tinue spraying once a week after the flowers 1. Anonymous. De Botrytis-aantasting van Glatlio- are cut. lusknollen. Verslagen En Mededelingen Van De Plantenziektenkundige Te Wageningen, No. 97. Octo 4. When spraying twice weekly, alternate ber 1948. maneb with zineb. 2. Bald, J. G. Gladiolus diseases. A progress report 5. If the weather makes it impractical to on current research compiled from discussions at the Eighth Annual Convention, North American Gladiolus apply sprays or dusts properly, dip the spike Council Cleveland, Ohio, Jan. 15-18, 1953. 11 pp. Mimeo. heads for 5 seconds on arrival at packing 3. Comeadow, W. A. New fungicides for gladiolus. house in one of the following preparations: Gladiolus Magazine 12:9-11, 40. 1948. a) Puratized Agricultural Spray, one pint per 4. Dimock, A. W. Epiphytotic of Botrytis blight on gladiolus in Florida.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Palmate Leaves of Rhapis Excelsa
    r984l N. G. AND R. E. DENGLER:PLICATION FORMATION Principes,23(1),1984, PP. 31 48 Formation of Plications in the Pinnate Leaves of r11 r'I t Lnrysalldocarpus Iutescens and the PalmateLeaves of Rhapisexcelsa NaNcv G. DrxcrsR ANDRoNALD E. DEncrnn Department oJ'Botany, finiuersity ofToronto, Toronto, Ontario MSS lAl, Canada and Department of Botany, Scarborough College, Uniuersity oJ'Toronto, Vest HilI, Ontario MIC lA4, Canada For over 100 years plant morphologists palmately compound leaves first appear as have known that the large, dissectedleaves hood-shaped protuberances which encircle of palms exhibit a developmental pathway the shoot apical meristem. A series of which is distinctly different from that of transverse to oblique folds or plications the compound leaves of all other flowering develop near the margins of the primor- plants. ln those dicotyledonsand mono- dium (Fig. lA); these indicate the position cotyledons having dissected leaf blades, of the future leaf blade. A distinctive {ea- leaflets arise as free lobes on the margin ture of these plications is that they do not of the primordial leaf. In contrast, leaflet extend to the leaf margin, leaving an inception in the palms occurs by folding unplicate marginal strip of tissue. During of the submarginal part of the lamina, fol- the growth of most palm leaves a localized lowed in most groups by the secondary separation of tissue results in the splitting splitting of the blade into individual leaf- oT-the lamina into individual leaflets. In lets. Since this mode of leaflet origin seems some groups of palms the splitting occurs to have no counterpart in other flowering in the ridges nearest the shoot apex (Fig.
    [Show full text]
  • Journal Editorial Staff: Rachel Cobb, David Pfaff, Patricia Riley Hammer, Henri Nier, Suzanne Pierot, Sabina Sulgrove, Russell Windle
    Spring 2010 Volume 36 IVY J OURNAL IVY OF THE YEAR 2011 Hedera helix ‘Ivalace’ General Information Press Information American Ivy Society [email protected] P. O. Box 163 Deerfield, NJ 08313 Ivy Identification, Registration Membership Russell A. Windle The American Ivy Society Membership American Ivy Society Laurie Perper P.O. Box 461 512 Waterford Road Lionville, PA 19353-0461 Silver Spring, MD, 20901 [email protected] Officers and Directors President—Suzanne Warner Pierot Treasurer—Susan Hendley Membership—Laurie Perper Registrar, Ivy Research Center Director—Russell Windle Taxonomist—Dr. Sabina Mueller Sulgrove Rosa Capps, Rachel Cobb, Susan Cummings, Barbara Furlong, Patricia Riley Hammer, Constance L. Meck, Dorothy Rouse, Daphne Pfaff, Pearl Wong Ivy Journal Editorial Staff: Rachel Cobb, David Pfaff, Patricia Riley Hammer, Henri Nier, Suzanne Pierot, Sabina Sulgrove, Russell Windle The Ivy Journal is published once per year by the American Ivy Society, a nonprofit educational organization. Membership includes a new ivy plant each year, subscription to the Ivy Journal and Between the Vines, the newsletter of The American Ivy Society. Editorial submissions are welcome. Mail typed, double-spaced manuscript to the Ivy Journal Editor, The American Ivy Society. Enclose a self-addressed, stamped envelope if you wish manuscript and/ or artwork to be returned. Manuscripts will be handled with reasonable care. However, AIS assumes no responsibility for safety of artwork, photographs, or manuscripts. Every precaution is taken to ensure accuracy but AIS cannot accept responsibility for the corrections or accuracy of the information supplied herein or for any opinion expressed. The American Ivy Society P. O. Box 163, Deerfield Street, NJ 08313 www.ivy.org Remember to send AIS your new address.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]