A Study of the Mutational Landscape of Pediatric-Type Follicular Lymphoma

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the Mutational Landscape of Pediatric-Type Follicular Lymphoma Modern Pathology (2016) 29, 1212–1220 OPEN 1212 Official journal of the United States and Canadian Academy of Pathology A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma Michael G Ozawa1,6, Aparna Bhaduri2,6, Karen M Chisholm3, Steven A Baker1, Lisa Ma1, James L Zehnder1,4, Sandra Luna-Fineman5, Michael P Link5, Jason D Merker1, Daniel A Arber1 and Robert S Ohgami1 1Department of Pathology, Stanford University, Stanford, CA, USA; 2Program in Epithelial Biology, Stanford University, Stanford, CA, USA; 3Department of Laboratories, Seattle Children’s Hospital, Seattle, WA, USA; 4Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA and 5Department of Pediatrics, Stanford University, Stanford, CA, USA Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. Modern Pathology (2016) 29, 1212–1220; doi:10.1038/modpathol.2016.102; published online 24 June 2016 Non-Hodgkin lymphomas are estimated to be the follicular lymphoma and pediatric nodal marginal fourth most common malignancy in children and zone lymphoma, are rare diseases with several fifth most common in the adolescent and young distinctive characteristics in presentation and clin- adult population. Although aggressive mature B-cell ical behavior when compared with their adult 1–3 lymphomas, including Burkitt lymphoma and dif- counterparts. Pediatric-type follicular lymphoma fuse large B-cell lymphoma, comprise a significant is a distinct variant from the adult-type, typically proportion of pediatric lymphomas and show seen between the ages of 3 and 18 years, though cases occurring in young adults have also been many features similar to cases occurring in adults, 4,5 indolent B-cell lymphomas, including pediatric-type described. Pediatric-type follicular lymphoma shows a male predominance (approximately 4:1) and most often involves lymph nodes of the cervical Correspondence: MG Ozawa, MD, PhD or Professor RS Ohgami, regions, though extranodal occurrences in the testis, MD, PhD, Department of Pathology, Stanford University Medical epididymis, and gastrointestinal tract have been Center, 300 Pasteur Drive, Room L235, Stanford 94305, CA, USA. reported.4,5 The majority of patients with pediatric- E-mail: [email protected] or [email protected] 6These authors contributed equally to this work. type follicular lymphoma, present with localized Received 23 March 2016; revised 26 April 2016; accepted 1 May stage I disease and follow an indolent clinical course. 2016; published online 24 June 2016 The morphologic features are similar to those of the www.modernpathology.org Pediatric lymphoma mutational landscape MG Ozawa et al 1213 adult-type follicular lymphoma, with most cases Materials and methods showing increased atypical follicles comprised of cleaved small and larger centroblastic lymphocytes. Case Selection Despite frequently showing more aggressive cytolo- Case records from the Department of Pathology, gic features (often grade 2 or grade 3 in morphology), Stanford University Medical Center and Seattle patients with pediatric-type follicular lymphoma Children’s Hospital were reviewed from 1996 to show excellent response rates to local surgical 2015 for cases with a diagnosis of marginal zone resection or minimal chemotherapy and have very lymphoma or follicular lymphoma in patients o30 low recurrence rates.4 Pediatric-type follicular lym- years of age. All hematoxylin and eosin-stained slides, phoma lacks the characteristic IGH-BCL2; t(14;18) as well as all available supplementary material, were (q32;q21) translocation found in ~ 80% of adult-type reviewed confirming the previously rendered diag- follicular lymphoma with absence of BCL2 protein noses according to WHO criteria.8 A total of 12 cases expression. Recently, Martin–Guerrero et al. described were identified, 6 cases of pediatric-type follicular recurrent loss of heterozygosity in 1p36 and associa- lymphoma and 6 cases of pediatric nodal marginal tion with TNFRSF14 mutations in a small subset of zone lymphoma. From this cohort, the clinical and pediatric-type follicular lymphoma patients.6 morphologic features of one pediatric-type follicular Comparably, arising from post-germinal center lymphoma case with paired tumor-normal (unin- memory B-cells, pediatric nodal marginal zone volved lymph node) set were recently reported.12 lymphoma shares similar architectural and immu- An additional 22 cases of adult-type follicular nophenotypic features with the adult-type; however, lymphoma were selected as additional controls: 14 – distinct and characteristically, pediatric nodal mar- cases of adult-type follicular lymphoma grade 1 2; ginal zone lymphoma demonstrates a male prepon- 6 cases of adult-type follicular lymphoma grade 3A; and 2 cases of adult-type follicular lymphoma grade derance (approximately 20:1) and is largely localized ’ to the head and neck regions.7,8 This lymphoma 3B. This study was approved by Stanford sinstitu- presents as stage 1 localized disease and carries tional review board. an excellent prognosis and overall low rate of recurrence.9 Genetic aberrations in pediatric nodal marginal zone lymphoma have been described, with Exome Library Preparation and Sequencing the most frequent alteration seen being trisomy 18 Library preparation and exome sequencing were (17%), which is also a frequent cytogenetic abnorm- performed as previously described.13,14 In brief, ality found in adult-type nodal marginal zone DNA was extracted from formalin-fixed paraffin lymphoma.10,11 Similar to pediatric-type follicular embedded tissue using Qiagen DNeasy kits accord- lymphoma, definitive diagnosis of pediatric nodal ing to the manufacturer’s protocols. The Agilent marginal zone lymphoma and separation from SureSelect Exon V5 target enrichment system was similar morphologic entities remains challenging. used to enrich for a 51-Mb exome following Illumina Given the propensity for some overlapping fea- Hiseq 2500 V3 platform sequencing using 100-bp tures between pediatric-type follicular lymphoma paired-end reads, with high output mode coverage at and pediatric nodal marginal zone lymphoma and 200 × with 2 × 100 PE read length. the paucity of literature describing the genetic landscape of these distinct entities, we performed whole-exome deep sequencing (4140-fold coverage) Alignment, Single-Nucleotide Variant, Copy-Number on 10 cases of pediatric nodal marginal zone Variant and Indel Analysis lymphoma and pediatric-type follicular lymphoma, DNA sequence alignment was performed using as well as Sanger sequencing on two additional BWA-MEM. Mutation analysis was performed with cases, to characterize the mutational signature of three mutation callers, Mutect (version 1.17), Sure- these rare tumors and search for additional driver Call SNPPET (version 3.0, Agilent Technologies), mutations and involved biological pathways. Our and Varscan2.15,16 For all samples, callers were run analysis identified a novel recurrent somatic point with default settings in individual sample analysis mutation in pediatric-type follicular lymphoma in modes. In order to call a mutation, 20 × coverage of the transcription factor interferon regulator factor the base analyzed (as defined by the mutation caller 8/interferon consensus-binding protein (IRF8/ itself) was required, as well as coverage in both the 4 ICSBP), c.197A G encoding p.Lys66Arg. Additional forward and reverse directions. Unequal representa- somatic variants were observed in pediatric-type tion of read counts (480%/20% split) was addition- follicular lymphoma and pediatric nodal marginal ally discounted. For the sample with a paired
Recommended publications
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Laboratory Mouse Models for the Human Genome-Wide Associations
    Laboratory Mouse Models for the Human Genome-Wide Associations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kitsios, Georgios D., Navdeep Tangri, Peter J. Castaldi, and John P. A. Ioannidis. 2010. Laboratory mouse models for the human genome-wide associations. PLoS ONE 5(11): e13782. Published Version doi:10.1371/journal.pone.0013782 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8592157 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Laboratory Mouse Models for the Human Genome-Wide Associations Georgios D. Kitsios1,4, Navdeep Tangri1,6, Peter J. Castaldi1,2,4,5, John P. A. Ioannidis1,2,3,4,5,7,8* 1 Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America, 2 Tufts University School of Medicine, Boston, Massachusetts, United States of America, 3 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine and Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece, 4 Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, United States of America, 5 Department of Medicine, Center for Genetic Epidemiology and Modeling, Tufts Medical Center, Tufts University
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • An Immunoevasive Strategy Through Clinically-Relevant Pan-Cancer Genomic and Transcriptomic Alterations of JAK-STAT Signaling Components
    bioRxiv preprint doi: https://doi.org/10.1101/576645; this version posted March 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components Wai Hoong Chang1 and Alvina G. Lai1, 1Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom Since its discovery almost three decades ago, the Janus ki- Although cytokines are responsible for inflammation in nase (JAK)-signal transducer and activator of transcription cancer, spontaneous eradication of tumors by endoge- (STAT) pathway has paved the road for understanding inflam- nous immune processes rarely occurs. Moreover, the matory and immunity processes related to a wide range of hu- dynamic interaction between tumor cells and host immu- man pathologies including cancer. Several studies have demon- nity shields tumors from immunological ablation, which strated the importance of JAK-STAT pathway components in overall limits the efficacy of immunotherapy in the clinic. regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. Focusing on 133 genes involved in Cytokines can be pro- or anti-inflammatory and are inter- JAK-STAT signaling, we found that copy number alterations dependent on each other’s function to maintain immune underpin transcriptional dysregulation that differs within and homeostasis(3).
    [Show full text]
  • Impact of Chromosome 9 Numerical Imbalances in Oral Squamous Cell Carcinoma: a Pilot Grid-Based Centromere Analysis
    diagnostics Communication Impact of Chromosome 9 Numerical Imbalances in Oral Squamous Cell Carcinoma: A Pilot Grid-Based Centromere Analysis 1, 1, 2, Efthymios Kyrodimos y , Aristeidis Chrysovergis y , Nicholas Mastronikolis y, Evangelos Tsiambas 3,*, Christos Riziotis 4,5,* , Dimitrios Roukas 6, Panagiotis Fotiades 7, Chara Stavraka 8 , Vasileios Ragos 9, Minas Paschopoulos 10 and Vasileios Papanikolaou 1 1 1st ENT Department, Hippocration General Hospital, University of Athens, 115 27 Athens, Greece; [email protected] (E.K.); [email protected] (A.C.); [email protected] (V.P.) 2 ENT Department, Medical School, University of Patras, 265 04 Patras, Greece; [email protected] 3 Department of Cytopathology, 417 Veterans Army Hospital (NIMTS), 115 21 Athens, Greece 4 Theoretical and Physical Chemistry Institute, Photonics for Nanoapplications Laboratory, National Hellenic Research Foundation, 11635 Athens, Greece 5 Defence & Security Research Institute, University of Nicosia, CY-2417 Nicosia, Cyprus 6 Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), 115 21 Athens, Greece; [email protected] 7 Department of Surgery, 424 General Army Hospital, 564 29 Thessaloniki, Greece; [email protected] 8 Department of Medical Oncology, Guy’s and St Thomas National Health System Foundation Trust, London SE1 9RT, UK; [email protected] 9 Department of Maxillofacial Surgery, Medical School, University of Ioannina, 455 00 Ioannina, Greece; [email protected] 10 Department of Obstetrics and Gynaecology, School of Health Sciences, University of Ioannina, 455 00 Ioannina, Greece; [email protected] * Correspondence: [email protected] (E.T.); [email protected] (C.R.); Tel.: +00306946939414 (E.T.) These authors are equally contributed. y Received: 16 June 2020; Accepted: 14 July 2020; Published: 21 July 2020 Abstract: Oral squamous cell carcinoma (OSCC) is considered an aggressive malignancy, mainly due to its increased propensity to provide local and distant lymph node metastases.
    [Show full text]
  • Cutting Edge: Expression of IRF8 in Gastric Epithelial Cells Confers
    Cutting Edge: Expression of IRF8 in Gastric Epithelial Cells Confers Protective Innate Immunity against Helicobacter pylori Infection This information is current as of September 27, 2021. Ming Yan, Hongsheng Wang, Jiafang Sun, Wei Liao, Peng Li, Yin Zhu, Chengfu Xu, Jungsoo Joo, Yan Sun, Sadia Abbasi, Alexander Kovalchuk, Nonghua Lv, Warren J. Leonard and Herbert C. Morse III J Immunol published online 3 February 2016 Downloaded from http://www.jimmunol.org/content/early/2016/02/02/jimmun ol.1500766 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/02/02/jimmunol.150076 Material 6.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 3, 2016, doi:10.4049/jimmunol.1500766 Th eJournal of Cutting Edge Immunology Cutting Edge: Expression of IRF8 in Gastric Epithelial Cells Confers Protective Innate Immunity against Helicobacter pylori Infection x x Ming Yan,*,1 Hongsheng Wang,†,1 Jiafang Sun,† Wei Liao,‡, Peng Li,‡, { † Yin Zhu, ChengfuXu,*JungsooJoo,*YanSun,*SadiaAbbasi,{ x Alexander Kovalchuk,† Nonghua Lv, Warren J.
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]
  • Efficient Analysis of Mouse Genome Sequences Reveal Many Nonsense Variants
    Efficient analysis of mouse genome sequences reveal many nonsense variants Sophie Steelanda,b,1, Steven Timmermansa,b,1, Sara Van Ryckeghema,b, Paco Hulpiaua,b, Yvan Saeysa,c, Marc Van Montagud,e,f,2, Roosmarijn E. Vandenbrouckea,b,3, and Claude Liberta,b,2,3 aInflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; bDepartment of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; cDepartment of Internal Medicine, Ghent University, 9052 Ghent, Belgium; dDepartment of Plant Systems Biology, VIB, 9052 Ghent, Belgium; eDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and fInternational Plant Biotechnology Outreach, VIB, Ghent, Belgium Contributed by Marc Van Montagu, March 30, 2016 (sent for review December 31, 2015; reviewed by Bruce Beutler, Stefano Bruscoli, Stefan Rose-John, and Klaus Schulze-Osthoff) Genetic polymorphisms in coding genes play an important role alive, archiving them, and distributing mutant strains to in- when using mouse inbred strains as research models. They have terested users (4). been shown to influence research results, explain phenotypical Since Clarence Little showed in the early 20th century that the differences between inbred strains, and increase the amount of principle of inbreeding also applies to mice, several hundred interesting gene variants present in the many available inbred inbred mouse strains have been generated (5). Some of these lines. SPRET/Ei is an inbred strain derived from Mus spretus that strains display specific phenotypes that are the result of a mutant has ∼1% sequence difference with the C57BL/6J reference ge- gene, and in several cases have formed the basis for identifying nome.
    [Show full text]
  • Supplemental Methods Proband and Control Lung Samples Lung Sections from Both the Proband and Age-Matched Controls Were Obtained
    Supplementary material J Med Genet Supplemental Methods Proband and Control Lung Samples Lung sections from both the proband and age-matched controls were obtained in the form of fixed formalin paraffin embedded (FFPE) samples. Control lung samples were obtained from the BRINDL biorepository at the University of Rochester(1). RNA expression analyses RNA was obtained for mRNA expression studies using the RNeasy FFPE kit (Qiagen) according to manufacturer’s instructions. cDNA was then generated using iScrpit kit (biorad), and quantitative PCR was done as previously published (2). Primers for qPCR are listed in supplemental table 1. Chromatin Immunoprecipitation of FFPE for Fixed Formalin Paraffin Embedded samples Chromatin immunoprecipitation was done on FFPE sections using a protocol modified from Fanelli and colleagues, Nature Methods, 2011(3) Samples were deparaffinized by incubating 10uM sections in 1ml of Xylene for 10 minutes at room temperature. The tissue was then pelleted at 17,000 x gravity for 3 min at room temperature. This process was repeated 3 times. Samples were then rehydrated by incubating with 1 ml of 100% Ethanol for 10 minutes at RT. Cells were pelleted and resuspended in progressively increasing percentage of water as follows: 95% ethanol, 70% ethanol, 50% ethanol, 20% ethanol. The sample was then resuspended in 1x PBS and the tissue dissociated by sonicating with a Bioruptor (Diagnode, NJ USA) for 30 seconds on the medium setting. Cells then resuspended in Collagenase digestion buffer and treated with collagenase A (Roche 11 088 785 103) to a final concentration of 2mg/ml and digested at 37 C for 45 minutes.
    [Show full text]
  • SOCS-Mediated Immunomodulation of Natural Killer Cells T ⁎ Narelle Keating, Sandra E
    Cytokine 118 (2019) 64–70 Contents lists available at ScienceDirect Cytokine journal homepage: www.elsevier.com/locate/cytokine Review article SOCS-mediated immunomodulation of natural killer cells T ⁎ Narelle Keating, Sandra E. Nicholson Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia ARTICLE INFO ABSTRACT Keywords: Natural killer (NK) cells are innate immune cells with an intrinsic ability to detect and kill infected and can- Cancer cerous cells. The success of therapies targeting immune checkpoints on CD8 cells has intensified interest in Immune checkpoints harnessing the cytolytic effector functions of NK cells for new cancer treatments. NK cell development, survival NK cells and effector activity is dependent on exposure to the cytokine interleukin (IL)-15. The suppressor ofcytokine SOCS proteins (SOCS) proteins (CIS; SOCS1-7) are important negative regulators of cytokine signaling, and both CIS and SOCS2 CIS are reported to have roles in regulating NK cell responses. Their immunomodulatory effects on NK cells suggest SOCS2 that these SOCS proteins are promising targets that can potentially form the basis of novel cancer therapies. Here we discuss the role of NK cells in tumor immunity as well as review the role of the SOCS proteins in regulating IL- 15 signaling and NK cell function. 1. Introduction success of the immune checkpoint inhibitors has stimulated efforts to harness the anti-tumor effector functions of NK cells. Whilst CTLA-4 is Cancer is a major cause of disease burden worldwide, with an es- expressed on the surface of activated murine NK cells, it does not ap- timated 8.2 million cancer-related deaths in 2012 [1] and 1,735,000 pear to be expressed on human NK cells [6].
    [Show full text]
  • Daneshshahab.Pdf (3.352Mb)
    BMP SIGNALING THROUGH BMPR1A IS REQUIRED FOR ESTABLISHMENT OF PANCREATIC LATERALITY APPROVED BY SUPERVISORY COMMITTEE Ondine Cleaver, Ph.D. Melanie H. Cobb, Ph.D. Raymond J. MacDonald, Ph.D. Eric N. Olson, Ph.D. THIS DISSERTATION IS DEDICATED TO MY FAMILY, PAST, PRESENT AND FUTURE BMP SIGNALING THROUGH BMPR1A IS REQUIRED FOR ESTABLISHMENT OF PANCREATIC LATERALITY by SHAHAB SHAUN MALEKPOUR DANESH DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas May, 2009 Copyright by SHAHAB SHAUN MALEKPOUR DANESH, 2009 All Rights Reserved ACKNOWLEDGEMENTS I would like to thank my thesis advisor, Dr. Ondine Cleaver for her guidance and support. Ondine accepted me into her lab as a fifth year graduate student who had already been in three labs and had no background in developmental biology or mouse work. Her undying guidance, motivation and enthusiasm for science have allowed me to grow as a scientist and complete my thesis in two short years. I would like to thank my committee members Dr. Melanie Cobb, Dr. Eric Olson, and especially my thesis chair, Dr. Raymond MacDonald. They have provided invaluable suggestions and guidance that have facilitated my project that has allowed me to complete a substantial amount of work in a short time. I would like to thank the members of the Cleaver lab for providing a collaborative environment for science. Aly Villasenor was a great resource for exchange of valuable scientific ideas.
    [Show full text]
  • Targeting Lymphomas Through MALT1 Inhibition
    www.impactjournals.com/oncotarget/ Oncotarget, December, Vol.3, No 12 Targeting Lymphomas Through MALT1 Inhibition Lorena Fontan and Ari Melnick Diffuse large B-cell lymphoma (DLBCL), the most contain mutations in TLR and BCR signaling components common form of non-Hodgkin Lymphoma, comprises [4, 5]. These data revealed that MALT1 is a bona fide a heterogeneous group of diseases that can be classified therapeutic target, inhibition of which may disrupt into at least three different entities with distinct gene oncogenic signaling induced by somatic mutations in expression signatures. Among these, the activated B ABC-DLBCLs. However Z-VRPR-FMK is not suitable cell-like (ABC)-DLBCLs are the most resistant to as a therapeutic agent due its unfavorable pharmacological current standard immune-chemotherapy regimens [1]. properties. Development of novel targeted therapies with activity Fortunately, two recent studies identified small in this DLBCL subtype is required to improve clinical molecule inhibitors of the MALT1 protease activity outcome for these patients. with potent activity against ABC-DLBCL cells both Efforts to identify recurrent somatic mutations in in vitro and in vivo [6, 7]. One of the studies identified ABC-DLBCLs have revealed common biological themes phenothiazine compounds as mediating reversible MALT1 despite their considerable genetic heterogeneity. Most cleavage inhibition [7]; whereas the other identified a notably frequent activating somatic mutation in B-cell novel compound termed “MALT1 inhibitor-2” (MI- receptor (BCR) and Toll like receptor (TLR) signaling 2), that irreversibly binds the active site of MALT1 and pathways, leading to constitutive NF-κB activity [2]. potently suppresses its enzymatic activity at nanomolar Along these lines the MALT1 paracaspase has emerged as concentrations [6].
    [Show full text]