The Influence of Tea Tree Oil (Melaleuca Alternifolia) on Fluconazole Activity Against Fluconazole-Resistant Candida

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Tea Tree Oil (Melaleuca Alternifolia) on Fluconazole Activity Against Fluconazole-Resistant Candida Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 590470, 9 pages http://dx.doi.org/10.1155/2015/590470 Research Article The Influence of Tea Tree Oil (Melaleuca alternifolia)on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains Anna Mertas, Aleksandra GarbusiNska, Ewelina Szliszka, Andrzej Jureczko, Magdalena Kowalska, and Wojciech Król Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland Correspondence should be addressed to Wojciech Krol;´ [email protected] Received 9 June 2014; Revised 17 September 2014; Accepted 12 October 2014 Academic Editor: Vasilis P. Valdramidis Copyright © 2015 Anna Mertas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this study was to evaluate the activity of fluconazole against 32 clinical strains of fluconazole-resistant Candida albicans,andC. albicans ATCC 10231 reference strain, after their exposure to sublethal concentrations of tea tree oil (TTO) or its main bioactive component terpinen-4-ol. For all tested fluconazole-resistant C. albicans strains TTO and terpinen-4-ol minimal inhibitory concentrations (MICs) were low, ranging from 0.06% to 0.5%. The 24-hour exposure of fluconazole-resistant C. albicans strains to fluconazole with sublethal dose of TTO enhanced fluconazole activity against these strains. Overall, 62.5% of isolates were classified as susceptible, 25.0% exhibited intermediate susceptibility, and 12.5% were resistant. For all of the tested clinical strains the fluconazole MIC decreased from an average of 244.0 g/mL to an average of 38.46 g/mL, and the fluconazole minimal fungicidal concentrations (MFC) decreased from an average of 254.67 g/mL to an average of 66.62 g/mL. Terpinen-4-ol was found to be more active than TTO, and strongly enhanced fluconazole activity against fluconazole-resistant C. albicans strains. The results of this study demonstrate that combining natural substances such as TTO and conventional drug such as fluconazole, may help treat difficult yeast infections. 1. Introduction includes maximum and minimum percentage values for the 15 most important TTO components. TTO obtained by steam Essential oils are antiseptic substances produced by plants. distillation of the leaves and terminal branches of Melaleuca Teatreeoil(TTO)istheessentialoilobtainedbysteamdistil- alternifolia Cheel, Melaleuca linariifolia Smith, Melaleuca lation from the Australian native plant Melaleuca alternifolia dissitiflora F. Mueller, and other species of Melaleuca should and is used medicinally as a topical antiseptic. It has a conform to this standard [2]. broad spectrum of antimicrobial activity against a wide TTO has been used for centuries in Australian folk range of bacteria, viruses, and fungi, including yeasts and medicine, predominantly for wound treatment [3, 4]. In the dermatophytes. TTO is a mixture of more than 100 different 1920s, Penfold described for the first time the properties compounds, primarily terpenes (mainly monoterpenes and and chemical composition of TTO, and he later confirmed sesquiterpenes). The physical properties and chemical com- the antiseptic properties of TTO and its components [5– position of TTO are variable, and it is, therefore, important to 8]. In the 1930s, consecutive publications appeared which determine international standards. The Australian Standard demonstrated the powerful antimicrobial activity of TTO for tea tree oil (AS 2782-1985) includes directives relating when used in inhalation therapy, aseptic surgery, dental to the levels of two components: the minimum content of surgery, wound disinfection, and oral cavity rinsing [9–11]. terpinen-4-ol should be at least 30% and the maximum con- Currently,TTOisusedasalocalagentfortreatingvarious tentof1,8-cineoleshouldbelessthan15%oftheoilvolume diseases, predominantly dermatoses (e.g., recurrent herpes [1]. The international standard for tea tree oil (ISO 4730:2004) labialis,acne,pustules,dandruff,andrash).TTOisalsoused 2 BioMed Research International to treat Staphylococcus aureus infections of the oral cavity Table 1: Composition of the TTO used in this study compared to and the pharynx, vaginitis, and respiratory tract diseases. ISO standard 4730:2004 [2]. Numerous studies have confirmed the broad antimicrobial Content (%) Content (%) of TTO activity of TTO against bacteria, fungi, and viruses, as well as Components according to ISO sample microorganisms that are resistant to conventional drugs [12– standard 4730 16]. This is important due to the increase in infections that are -Pinene 1–6 2.5 difficulttotreat,asTTOcanbeusedasanalternativetoorin combination with conventional drugs (including antibiotics Sabinene Trace-3.5 0.1 and chemotherapeutic agents). -Terpinene 5–13 8.1 Treatment of infections can be based on monotherapy Limonene 0.5–1.5 1.0 (using one antimicrobial drug) or combined therapy (two or p-Cymene 0.5–8 4.4 more drugs). The primary aim of combined therapy is to enhance the action of the drugs while decreasing the dosages, 1,8-Cineole Trace-15 2.8 through synergism. When monotherapy or combined ther- -Terpinene 10–28 19.6 apy based on conventional drugs is unsuccessful, then com- Terpinolene 1.5–5 3.2 bined treatment including a natural agent may be more Terpinen-4-ol 30–48 41.0 effective. Several recent studies have reported the increased antimicrobial activity of natural substances combined with -Terpineol 1.5-8 3.0 conventional drugs as compared to conventional drug treat- Aromadendrene Trace-3 1.3 ment alone [17–20]. Ledene Trace-3 No data available The aim of this study was to evaluate the activity of (syn. viridiflorene) fluconazole against clinical strains of fluconazole-resistant -Cadinene Trace-3 No data available Candida albicans and reference strain C. albicans ATCC Globulol Trace-1 No data available 10231, after their exposure to sublethal concentrations of TTO or its main bioactive component terpinen-4-ol. Viridiflorol Trace-1 No data available 2. Materials and Methods 2.1. Candida albicans Strains. This study included 32 clinical 2.2. Tea Tree Oil (TTO). In this study, we used Australian Candida albicans strains, which were isolated from the tea tree oil (Melaleuca alternifolia)fromThursdayPlantation following materials: swabs of the pharynx and oral cavity (Integria Healthcare, Eight Mile Plains, QLD, Australia) (=5), vagina (=15), sputum (=8), or faeces series 270930 that conforms to the ISO standard 4730:2004 (=4). These strains were isolated from culture on Sabour- [2](Table 1). TTO was distilled from specially selected aud agar (bioMerieux,` Marcy l’Etoile, France), and species Melaleuca alternifolia leaves, a plant native to the coastal identification was performed using the biochemical test ID regions of northern New South Wales and south eastern 32C (bioMerieux,` Marcy l’Etoile, France). We also used Queensland in Australia. The analysis of TTO composition the reference strain C. albicans ATCC 10231, which was was carried out by gas chromatography according to the purchased from Oxoid Ltd. (Basingstoke, Great Britain). We international standard ISO 4730 [2]. It was performed in the following conditions: fused-silica column (50 m × 0,20 mm previously determined the sensitivity of C. albicans strains to fluconazole by the Kirby-Bauer disk diffusion susceptibility i.d., film thickness 0,25 m) and flame ionisation type of detector were used, the carrier gas was hydrogen (flow rate of test [21] using 6 mm filter paper disks impregnated with ∘ 1 mL/min), the oven temperature programme was from 70 C 10 g of fluconazole obtained from DHN (Cracow, Poland) ∘ ∘ to 220 Catarateof2C/min, the injector temperature was and YNB agar (Yeast Nitrogen Base-Difco 0.5%, glucose ∘ ∘ 230 C, the detector temperature was 250 C, the volume of 3%, agar 1.8%, pH = 7) also obtained from DHN (Cracow, Poland). The C. albicans strains were classified as exhibiting injected TTO was 0,2 L, and the split ratio was 1 : 100. susceptibility(diameterofgrowthinhibitionzone≥18 mm), Inourstudy,wealsousedterpinen-4-ol,whichwas intermediate susceptibility (diameter of growth inhibition obtained from Sigma-Aldrich (St. Louis, MO, USA). zone from 14 mm to 17 mm), or resistance (diameter of growth inhibition zone <14 mm) to fluconazole (the data 2.3. Fluconazole. In this study, we used the antifungal drug were described in chapter 3). The fluconazole MIC (minimal fluconazole (Polfarmex, Kutno, Poland). The structure of the inhibitory concentration) and MFC (minimal fungicidal fluconazole molecule is shown in Figure 1. concentration) values were determined by the broth dilution method according to the Clinical and Laboratory Standards 2.4. Preparation of the Initial Candida albicans Suspension. Institute (CLSI document M27-A3-2008) [22]. Using this C. albicans cells cultured for 24 h on Sabouraud agar were suspended in a saline solution (0.85% NaCl) and adjusted to standard, the C. albicans strains were classified as exhibiting 8 susceptibility (MIC ≤ 8 g/mL), intermediate susceptibility a 0,5 McFarland density standard (1,5 × 10 CFU/mL). This 4 (MIC from 9 g/mL to 63 g/mL), or resistance (MIC ≥ suspension was later diluted to a density of 6 × 10 CFU/mL. 64 g/mL) to fluconazole (the data were presented in chapter The suspension was then used to estimate the MIC and MFC 3). values for TTO,
Recommended publications
  • Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
    animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions.
    [Show full text]
  • Antibiofilm Efficacy of Tea Tree Oil and of Its Main Component Terpinen-4-Ol Against Candida Albicans
    ORIGINAL RESEARCH Periodontics Antibiofilm efficacy of tea tree oil and of its main component terpinen-4-ol against Candida albicans Renata Serignoli Abstract: Candida infection is an important cause of morbidity FRANCISCONI(a) and mortality in immunocompromised patients. The increase in its Patricia Milagros Maquera incidence has been associated with resistance to antimicrobial therapy HUACHO(a) and biofilm formation. The aim of this study was to evaluate the Caroline Coradi TONON(a) efficacy of tea tree oil (TTO) and its main component – terpinen-4-ol – Ester Alves Ferreira BORDINI(a) against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 Marília Ferreira CORREIA(a) reference strains in planktonic and biofilm cultures. The minimum Janaína de Cássia Orlandi inhibitory concentration, minimum fungicidal concentration, and SARDI(b) rate of biofilm development were used to evaluate antifungal activity. Denise Madalena Palomari Results were obtained from analysis of the biofilm using the cell (a) SPOLIDORIO proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H- tetrazolium-5-carboxanilide (XTT) and confocal laser scanning (a) Universidade Estadual Paulista – Unesp, microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans School of Dentistry of Araraquara, Department of Physiology and Pathology, growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL Araraquara, SP, Brazil of terpinen-4-ol applied for 60 s (rinse simulation) interfered with (b) Universidade Estadual de Campinas – biofilm formation. Hence, this in vitro study revealed that natural Unicamp, School of Dentistry of Piracicaba, substances such as TTO and terpinen-4-ol present promising results Department of Physiological Sciences, for the treatment of oral candidiasis.
    [Show full text]
  • 204684Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 OFFICE DIRECTOR MEMO Deputy Office Director Decisional Memo Page 2 of 17 NDA 204,684 Miltefosine Capsules 1. Introduction Leishmania organisms are intracellular protozoan parasites that are transmitted to a mammalian host by the bite of the female phlebotomine sandfly. The main clinical syndromes are visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). VL is the result of systemic infection and is progressive over months or years. Clinical manifestations include fever, hepatomegaly, splenomegaly, and bone marrow involvement with pancytopenia. VL is fatal if untreated. Liposomal amphotericin B (AmBisome®) was FDA approved in 1997 for the treatment of VL. CL usually presents as one or more skin ulcers at the site of the sandfly bite. In most cases, the ulcer spontaneously resolves within several months, leaving a scar. The goals of therapy are to accelerate healing, decrease morbidity and decrease the risk of relapse, local dissemination, or mucosal dissemination. There are no FDA approved drugs for the treatment of CL. Rarely, CL disseminates from the skin to the naso-oropharyngeal mucosa, resulting in ML. ML can also develop some time after CL spontaneous ulcer healing. The risk of ML is thought to be highest with CL caused by the subgenus Viannia. ML is characterized in the medical literature as progressive with destruction of nasal and pharyngeal structures, and death may occur due to complicating aspiration pneumonia. There are no FDA approved drugs for the treatment of ML. Paladin Therapeutics submitted NDA 204, 684 seeking approval of miltefosine for the treatment of VL caused by L.
    [Show full text]
  • Voriconazole
    Drug and Biologic Coverage Policy Effective Date ............................................ 6/1/2020 Next Review Date… ..................................... 6/1/2021 Coverage Policy Number .................................. 4004 Voriconazole Table of Contents Related Coverage Resources Coverage Policy ................................................... 1 FDA Approved Indications ................................... 2 Recommended Dosing ........................................ 2 General Background ............................................ 2 Coding/Billing Information .................................... 4 References .......................................................... 4 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion
    [Show full text]
  • Antifungal Agents in Agriculture: Friends and Foes of Public Health
    biomolecules Review Antifungal Agents in Agriculture: Friends and Foes of Public Health Veronica Soares Brauer 1, Caroline Patini Rezende 1, Andre Moreira Pessoni 1, Renato Graciano De Paula 2 , Kanchugarakoppal S. Rangappa 3, Siddaiah Chandra Nayaka 4, Vijai Kumar Gupta 5,* and Fausto Almeida 1,* 1 Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; [email protected] (V.S.B.); [email protected] (C.P.R.); [email protected] (A.M.P.) 2 Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, ES 29047-105, Brazil; [email protected] 3 Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; [email protected] 4 Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India; [email protected] 5 Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia * Correspondence: [email protected] (V.K.G.); [email protected] (F.A.) Received: 7 July 2019; Accepted: 19 September 2019; Published: 23 September 2019 Abstract: Fungal diseases have been underestimated worldwide but constitute a substantial threat to several plant and animal species as well as to public health. The increase in the global population has entailed an increase in the demand for agriculture in recent decades. Accordingly, there has been worldwide pressure to find means to improve the quality and productivity of agricultural crops. Antifungal agents have been widely used as an alternative for managing fungal diseases affecting several crops. However, the unregulated use of antifungals can jeopardize public health.
    [Show full text]
  • Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut
    ■ CLINICAL REVIEW Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut Tinea versicolor (pityriasis versicolor) is a common imidazole, has been used for years both orally and top­ superficial fungal infection of the stratum corneum. ically with great success, although it has not been Caused by the fungus Malassezia furfur, this chronical­ approved by the Food and Drug Administration for the ly recurring disease is most prevalent in the tropics but indication of tinea versicolor. Newer derivatives, such is also common in temperate climates. Treatments are as fluconazole and itraconazole, have recently been available and cure rates are high, although recurrences introduced. Side effects associated with these triazoles are common. Traditional topical agents such as seleni­ tend to be minor and low in incidence. Except for keto­ um sulfide are effective, but recurrence following treat­ conazole, oral antifungals carry a low risk of hepato- ment with these agents is likely and often rapid. toxicity. Currently, therapeutic interest is focused on synthetic Key Words: Tinea versicolor; pityriasis versicolor; anti­ “-azole” antifungal drugs, which interfere with the sterol fungal agents. metabolism of the infectious agent. Ketoconazole, an (J Fam Pract 1996; 43:127-132) ormal skin flora includes two morpho­ than formerly thought. In one study, children under logically discrete lipophilic yeasts: a age 14 represented nearly 5% of confirmed cases spherical form, Pityrosporum orbicu- of the disease.3 In many of these cases, the face lare, and an ovoid form, Pityrosporum was involved, a rare manifestation of the disease in ovale. Whether these are separate enti­ adults.1 The condition is most prevalent in tropical tiesN or different morphologic forms in the cell and semitropical areas, where up to 40% of some cycle of the same organism remains unclear.: In the populations are affected.
    [Show full text]
  • Systemic Antifungal Drug Use in Belgium—
    Received: 7 October 2018 | Revised: 28 March 2019 | Accepted: 14 March 2019 DOI: 10.1111/myc.12912 ORIGINAL ARTICLE Systemic antifungal drug use in Belgium—One of the biggest antifungal consumers in Europe Berdieke Goemaere1 | Katrien Lagrou2,3* | Isabel Spriet4,5 | Marijke Hendrickx1 | Eline Vandael6 | Pierre Becker1 | Boudewijn Catry6,7 1BCCM/IHEM Fungal Collection, Service of Mycology and Aerobiology, Sciensano, Summary Brussels, Belgium Background: Reports on the consumption of systemic antifungal drugs on a national 2 Department of Microbiology and level are scarce although of high interest to compare trends and the associated epi- Immunology, KU Leuven, Leuven, Belgium 3Clinical Department of Laboratory demiology in other countries and to assess the need for antifungal stewardship Medicine, National Reference Centre for programmes. Mycosis, University Hospitals Leuven, Leuven, Belgium Objectives: To estimate patterns of Belgian inpatient and outpatient antifungal use 4Department of Pharmaceutical and and provide reference data for other countries. Pharmacological Sciences, KU Leuven, Methods: Consumption records of antifungals were collected in Belgian hospitals Leuven, Belgium between 2003 and 2016. Primary healthcare data were available for the azoles for 5Pharmacy Department, University Hospitals Leuven, Leuven, Belgium the period 2010-2016. 6 Healthcare‐Associated Infections and Results: The majority of the antifungal consumption resulted from prescriptions of Antimicrobial Resistance, Sciensano, Brussels, Belgium fluconazole and itraconazole in the ambulatory care while hospitals were responsible 7Faculty of Medicine, Université Libre de for only 6.4% of the total national consumption and echinocandin use was limited. Bruxelles (ULB), Brussels, Belgium The annual average antifungal consumption in hospitals decreased significantly by Correspondence nearly 25% between 2003 and 2016, due to a decrease solely in non-university hos- Berdieke Goemaere, Sciensano, Mycology pitals.
    [Show full text]
  • Table 1Fatty Acid Compostion of Salvia Species*
    ORIGINAL ARTICLE Org. Commun. 7:4 (2014) 114-122 Some new azole type heterocyclic compounds as antifungal agents Mohammad Russell*1 and Mohammad Ikthair Hossain Soiket2 1Department of Textile Engineering, Bangladesh University of Business and Technology, Mirpur-2, Dhaka-1216, Bangladesh 2Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Polashi, Dhaka-1000, Bangladesh (Received July 2, 2013; Revised December 3, 2014; Accepted December 12, 2014) Abstract:Schiff’s base1-[(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)]ethanone thiosemicarbazone (compound 1A) wasprepared by condensation of 1-(2,4-difluorophenyl)-2- [1 (H)-1,2,4-triazol-1-yl]ethanone (1)with thiosemicarbazide. The compound 1A, on reaction with α-halogenoketones yielded 1-(2, 4-difluorophenyl)-2- [(1H)-1,2,4-triazol-1-yl] ethanone [2-[4-halogenophenyl] thiazolyl]hydrazone.Anti-fungal activity of all the compounds has been tested against four fungal organism:C. albicans, Colletotrichum spp., A. nigar and Fusarium spp. commonly responsible for fungal infections in Bangladesh. Keywords: Schiff’s bases; compound 1A; 1-(2,4-difluorophenyl)-2- [1 (H)-1,2,4-triazol-1-yl] ethanone (1); α- halogenoketones; 1-(2,4-difluorophenyl)-2-[(1H)-1,2,4-triazol-1-yl] ethanone [2-[4-halogenophenyl] thiazolyl] hydrazone;Anti-fungal activity.© 2014 ACG Publications. All rights reserved. 1. Introduction Triazole compounds are gettingincreasingattention because oftheir extensive medicinal applications as antimicrobial agents particularly in antifungal therapy, and a large number of predominant triazole drugs have been successfully developed and prevalently used for the treatment of various microbial infections for many years1-3. Azoles like fluconazole, itraconazole, voriconazole, and posaconazole are important antifungal drugs for the treatment of IFIs (invasive fungal infections), which continues to be a major cause ofmorbidity and mortality in immune compromised or in severely ill patients4.
    [Show full text]
  • Stability of Two Antifungal Agents, Fluconazole and Miconazole, Compounded in HUMCO RECURA Topical Cream to Determine Beyond-Use Date
    PEER REVIEWED Stability of Two Antifungal Agents, Fluconazole and Miconazole, Compounded in HUMCO RECURA Topical Cream to Determine Beyond-use Date ABSTRACT Pradeep Gautam, MS Chemistry A novel compounding vehicle (RECURA) has previously been proven to Bob Light, BS, RPh penetrate the nail bed when compounded with the antifungal agent miconazole or fluconazole, providing for an effective treatment for onychomycosis. In this Troy Purvis, PhD study, miconazole and fluconazole were compounded separately in RECURA compounding cream, and they were tested at different time points (0, 7, 14, 28, 45, 60, 90, and 180 days), determining the beyond-use date of those INTRODUCTION formulations. The beyond-use date testing of both formulations (10% Onychomycosis is a fungal infection of miconazole in RECURA and 10% fluconazole in RECURA) proved them to be the nail bed in the fingers, or more com- physically, chemically, and microbiologically stable under International monly the toes, which affects an estimated Conference of Harmonisation controlled room temperature (25°C ± 2°C/60% 1 10% of the world’s population. Trichophy- RH ±5%) for at least 180 days from the date of compounding. Stability- ton is the typical fungal genus that causes indicating analytical method validation was completed for the simultaneous these infections in Western countries, while determination of miconazole and fluconazole in RECURA base using high- those living tropical regions experience Candida, Aspergillus, or Scytaldium infec- performance liquid chromatography coupled with photodiode array detector tion,2 but the symptoms of these infections prior to the study. are similar across the board. Minor infec- tion causes a yellow or black thickening of the nail bed, while further progression can 48% cure rate),1 yet concern about long- These medications must be in direct contact result in the nail chipping away and leaving term dosing and severe side-effects due to with the fungus in order to kill it.5 The FDA- an open sore, leading to secondary infec- oral administration exists.
    [Show full text]
  • The Epidemiology and Clinical Features of Balamuthia Mandrillaris Disease in the United States, 1974 – 2016
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 August 28. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1815–1822. doi:10.1093/cid/ciy813. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974 – 2016 Jennifer R. Cope1, Janet Landa1,2, Hannah Nethercut1,3, Sarah A. Collier1, Carol Glaser4, Melanie Moser5, Raghuveer Puttagunta1, Jonathan S. Yoder1, Ibne K. Ali1, Sharon L. Roy6 1Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 2James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, MD, USA 3Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 4Kaiser Permanente, San Francisco, CA, USA 5Office of Financial Resources, Centers for Disease Control and Prevention Atlanta, GA, USA 6Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract Background—Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. Methods—The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed.
    [Show full text]
  • DIFLUCAN® (Fluconazole Tablets) (Fluconazole for Oral Suspension)
    ® DIFLUCAN (Fluconazole Tablets) (Fluconazole for Oral Suspension) DESCRIPTION DIFLUCAN® (fluconazole), the first of a new subclass of synthetic triazole antifungal agents, is available as tablets for oral administration, as a powder for oral suspension. Fluconazole is designated chemically as 2,4-difluoro-α,α1-bis(1H-1,2,4-triazol-1-ylmethyl) benzyl alcohol with an empirical formula of C13H12F2N6O and molecular weight of 306.3. The structural formula is: OH N N N N CH2 C CH2 N F N F Fluconazole is a white crystalline solid which is slightly soluble in water and saline. DIFLUCAN Tablets contain 50 mg, 100 mg, 150 mg, or 200 mg of fluconazole and the following inactive ingredients: microcrystalline cellulose, dibasic calcium phosphate anhydrous, povidone, croscarmellose sodium, FD&C Red No. 40 aluminum lake dye, and magnesium stearate. DIFLUCAN for Oral Suspension contains 350 mg or 1400 mg of fluconazole and the following inactive ingredients: sucrose, sodium citrate dihydrate, citric acid anhydrous, sodium benzoate, titanium dioxide, colloidal silicon dioxide, xanthan gum, and natural orange flavor. After reconstitution with 24 mL of distilled water or Purified Water (USP), each mL of reconstituted suspension contains 10 mg or 40 mg of fluconazole. CLINICAL PHARMACOLOGY Pharmacokinetics and Metabolism The pharmacokinetic properties of fluconazole are similar following administration by the intravenous or oral routes. In normal volunteers, the bioavailability of orally administered fluconazole is over 90% compared with intravenous administration. Bioequivalence was Reference ID: 4387685 established between the 100 mg tablet and both suspension strengths when administered as a single 200 mg dose. Peak plasma concentrations (Cmax) in fasted normal volunteers occur between 1 and 2 hours with a terminal plasma elimination half-life of approximately 30 hours (range: 20 to 50 hours) after oral administration.
    [Show full text]
  • Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives
    Current Fungal Infection Reports (2019) 13:45–58 https://doi.org/10.1007/s12281-019-00338-6 PHARMACOLOGY AND PHARMACODYNAMICS OF ANTIFUNGAL AGENTS (N BEYDA, SECTION EDITOR) Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives Ruchi Thakkar1,2 & Akash Patil1,2 & Tabish Mehraj1,2 & Narendar Dudhipala1,2 & Soumyajit Majumdar1,2 Published online: 2 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review In this review, a compilation on the current antifungal pharmacotherapy is discussed, with emphases on the updates in the formulation and clinical approaches of the routinely used antifungal drugs in ocular therapy. Recent Findings Natamycin (Natacyn® eye drops) remains the only approved medication in the management of ocular fungal infections. This monotherapy shows therapeutic outcomes in superficial ocular fungal infections, but in case of deep-seated mycoses or endophthalmitis, successful therapeutic outcomes are infrequent, as a result of which alternative therapies are sought. In such cases, amphotericin B, azoles, and echinocandins are used off-label, either in combination with natamycin or with each other (frequently) or as standalone monotherapies, and have provided effective therapeutic outcomes. Summary In recent times, amphotericin B, azoles, and echinocandins have come to occupy an important niche in ocular antifungal pharmacotherapy, along with natamycin (still the preferred choice in most clinical cases), in the management of ocular fungal infections.
    [Show full text]