Lack of Lethal and Sublethal Effects of Cry1ac Bt-Toxin on Larvae of the Stingless Bee Trigona Spinipes

Total Page:16

File Type:pdf, Size:1020Kb

Lack of Lethal and Sublethal Effects of Cry1ac Bt-Toxin on Larvae of the Stingless Bee Trigona Spinipes Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes Maria Augusta P. Lima, Carmen Silvia S. Pires, Raul Narciso C. Guedes & Lucio Antonio O. Campos Apidologie Official journal of the Institut National de la Recherche Agronomique (INRA) and Deutschen Imkerbundes e.V. (D.I.B.) ISSN 0044-8435 Volume 44 Number 1 Apidologie (2012) 44:21-28 DOI 10.1007/s13592-012-0151-z 1 23 Your article is protected by copyright and all rights are held exclusively by INRA, DIB and Springer-Verlag, France. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Apidologie (2013) 44:21–28 Original article * INRA, DIB and Springer-Verlag, France, 2012 DOI: 10.1007/s13592-012-0151-z Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes 1 2 3 Maria Augusta P. LIMA , Carmen Silvia S. PIRES , Raul Narciso C. GUEDES , 4 Lucio Antonio O. CAMPOS 1Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil 2EMBRAPA Recursos Genéticos e Biotecnologia, Pq Estação Biológica, Asa Norte, Cx. Postal 02372, Brasília, DF 70849-970, Brazil 3Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil 4Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil Received 20 January 2012 – Revised 18 May 2012 – Accepted 4 June 2012 Abstract – Stingless bees, particularly Trigona spinipes, are important pollinators in tropical ecosystems and are potentially affected by environmental contaminants. In this study, we tested the possible negative effects on T. spinipes larvae of the ingestion of a diet contaminated with Cry1Ac Bt-toxin. This toxin is expressed in genetically modified cotton plants. A method of rearing stingless bee larvae is described in this paper. The larvae were provided with either pure larval diet, diluted larval diet, or larval diet diluted in a Cry1Ac solution compatible with the lethal pest-exposure level (50 μg/mL). Cry1Ac ingestion did not impair the development of worker larvae, but the diluted diet slightly increased larval mortality. These results indicate that harmful effects on stingless bee larvae due to the ingestion of pollen-expressed Cry1Ac toxin are unlikely under field conditions. Bacillus thuringiensis toxin / transgenic plants / environmental impact / native pollinator / risk assessment 1. INTRODUCTION face an increased risk of exposure to the toxin (Han et al. 2010). The cultivation of genetically modified (GM) Cotton flowers are frequently visited by crops is expanding rapidly worldwide, particu- several bee species to harvest pollen and nectar larly in Brazil. The increase in Brazil’s cultivat- (Arpaia et al. 2006). Foraging for these resour- ed area over the past few years is the highest in ces on Bt cotton may potentially affect these the world (James 2011). Transgenic cotton species, which are important because of their expressing Bacillus thuringiensis toxins (Bt pollination service for most terrestrial ecosys- cotton) was first planted in 1996 and is tems, including agroecosystems (Malone et al. currently the third largest crop cultivated world- 2002; Klein et al. 2007). Therefore, the envi- wide (James 2011). Due to the high levels of ronmental risk analysis of Bt cotton should expression of the Cry1Ac toxin in the pollen of include an assessment of the potentially harmful Bt cotton, the pollinators foraging on this crop effects of ingested pollen and nectar containing the expressed Bt protein Cry1Ac. This assess- ment should focus on a worst-case scenario, in Corresponding author: M.A.P. Lima, which the species facing a high risk of exposure [email protected] should be subjected to the highest doses that are Manuscript editor: Monique Gauthier possible in practice (Wilkinson 2004). Author's personal copy 22 M.A.P. Lima et al. The honey bee Apis mellifera Linnaeus is 2004). Because foraging stingless bees may the most frequently used pollinator in risk collect pollen from Bt plants and feed this assessment studies of Bt toxins due to its pollen to the larvae, these larvae can poten- economic value as a pollinator. There are few tially suffer lethal and sublethal effects from studies assessing the toxicological effect of Bt such exposure. The present study was con- toxins on bee larvae, even in the honey bee ducted to test this hypothesis. The objectives (Hanley et al. 2003; Babendreier et al. 2004; of the study were to develop a suitable Lerhman 2007;Limaetal.2011). Neverthe- methodology to assess the effects of Bt toxin less, the extrapolation of the results of such from GM plants on the worker larvae of studies to other bee species is questionable due stingless bees and to assess the risk of ingested to the nutritional, behavioral, and physiological Cry1Ac Bt-toxin on larval development. The differences among bee species. stingless bee Trigona spinipes Fabricius was Stingless bees (Hymenoptera: Apidae: used as a model because of its wide distribu- Meliponini), a group of eusocial bees, are tion and frequent occurrence on cotton flowers important pollinators in tropical and agricul- in Brazil. These characteristics make it a tural ecosystems (Slaa et al. 2006;Dick potential target for the expressed toxin (Arpaia 2001) and they are similar to most of the et al. 2006). In addition, caste determination in solitary bees in that they store large amounts this species is dependent on the amount of of pollen in their nests (Wcislo and Cane food ingested by the females (Buschini and 1996). The pollen is one of the primary Campos 1995). The colonies are usually large, components of the larval diet of meliponines showing a high level of recruitment of nest- (Velthuis et al. 2003)andistheprimary mates for foraging and efficient exclusion of protein source for stingless (and solitary) bee competing pollinator species (Almeida and larvae. The nutrition furnished by high-protein Laroca 1988;Niehetal.2004a,b, 2005; pollen produces larger adult workers, which Lichtenberg et al. 2011). These traits further are generally considered more efficient foragers increase the risk of exposure of the larvae of and pollinators (Klostermeyer et al. 1973;Pyke this species to the Bt toxins expressed in the 1978;Quezada-Euánetal.2011). pollen and nectar of GM cotton plants, and Unlike honey bee larvae, which are fed on this increased risk serves to justify the present glandular secretions produced by the nurse study. bees (Babendreier et al. 2004), stingless bee larvae ingest large amounts of pollen. There- 2. MATERIALS AND METHODS fore, the risk of exposure of stingless (and solitary) bee larvae to Cry toxins is higher than 2.1. Insects that of honey bee larvae and should be assessed. Unfortunately, despite the ecological Five colonies of the stingless bee species T. spinipes and economic importance of stingless bees in were collected in the field in Viçosa County (MG, tropical areas, there are no studies in stingless Brazil; 20°45′ S and 42°52′ W) from January through bees assessing the toxicity of GM plants June 2006 and maintained under field conditions at expressing Bt toxins. the experimental apiary of the Federal University Toxicological assessments of Bt proteins of Viçosa (Viçosa, MG, Brazil). These colonies expressed in GM plants in stingless bees are were used to collect larval diet and eggs for the needed, with a primary focus on the larval toxicological bioassays. stage. The development of suitable research The bioactivity of the Cry1Ac Bt-toxin was protocols is necessary to perform such verified following Lima et al. (2011)usingthe assessments. Tests with purified toxins are velvetbean caterpillar Anticarsia gemmatalis an initial step required for the risk assess- (Hübner) (Lepidoptera: Noctuidae), which is sus- ment of GM plants in bees (Malone et al. ceptible to this toxin. The caterpillars were reared Author's personal copy Does Cry1Ac Bt-toxin harm stingless bee larvae? 23 on a solid artificial diet based on beans and wheat with 36 μL of diet to allow the worker larva to germ under controlled conditions of 25±2 °C complete its development. The polyethylene micro- temperature, 70±5 % RH and 12 h photoperiod. plates containing the artificial brood chambers were maintained at 34±1 °C, 98±2 % RH and 24 h 2.2. Insecticidal bioactivity of Cry1Ac scotophase until the end of the feeding period. The artificial brood chambers were subsequently re- The toxin Cry1Ac used was obtained from the moved and transferred to conditions of 34±1 °C, Biochemistry Department of Case Western Reserve 70±10%RH,and24hdarktosimulatenatural University (Cleveland, OH, USA). The purified conditions (Sakagami 1981). All materials used to toxin was stored in lyophilized form at −15 °C collect the larvae, to store and collect the larval diet, and eventually dissolved in double-distilled (sterile) and to set up the bioassays were autoclaved or water to be mixed with the insect diet for the sterilized in germicidal UV light in a biosafety bioassays. The activity of the toxin was tested on chamber. second-instar velvetbean caterpillars. These caterpil- lars were continuously exposed to the Bt toxin- 2.4. Determination of pollen ingestion contaminated diet for 7 days at 34±1 °C and 98± by stingless bee larvae 2 % RH, environmental conditions typical for rearing the larvae of T. spinipes. This environment The values of the amount of pollen ingested simulated the conditions under which stingless bee per larva and the amount of toxin present in the larvae would be exposed to the toxins.
Recommended publications
  • Tetragona Clavipes (Hymenoptera, Apidae, Meliponini)
    UNIVERSIDADE DE SÃO PAULO FFCLRP – DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA Obtenção artificial de rainhas e estabelecimento de novas colônias de Tetragona clavipes (Hymenoptera, Apidae, Meliponini) Ivan de Castro Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Entomologia RIBEIRÃO PRETO – SP 2012 IVAN DE CASTRO Obtenção artificial de rainhas e estabelecimento de novas colônias de Tetragona clavipes (Hymenoptera, Apidae, Meliponini) Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências, Área de concentração: Entomologia Orientador: Prof. Dr. Ademilson Espencer Egea Soares RIBEIRÃO PRETO – SP 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE FICHA CATALOGRÁFICA Castro, Ivan de Obtenção artificial de rainhas e estabelecimento de novas colônias de Tetragona clavipes (Hymenoptera, Apidae, Meliponini). Ribeirão Preto, 2012. 99 p. il.; 30 cm Dissertação de Mestrado apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP - Área de Concentração: Entolmologia Orientador: Soares, Ademilson Espencer Egea 1. Tetragona clavipes. 2. Abelhas sem ferrão. 3. Obtenção artificial de rainhas. 4. Minicolônias. 5. Morfometria geométrica de asas. 6. Interação com fungo. Nome: CASTRO, Ivan de Título: Obtenção artificial de rainhas e estabelecimento de novas colônias de Tetragona clavipes (Hymenoptera, Apidae, Meliponini) Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências.
    [Show full text]
  • Pollen Harvest by Africanized Apis Mellifera and Trigona Spinipes in São Paulo Botanical and Ecological Views M
    POLLEN HARVEST BY AFRICANIZED APIS MELLIFERA AND TRIGONA SPINIPES IN SÃO PAULO BOTANICAL AND ECOLOGICAL VIEWS M. Cortopassi-Laurino, M. Ramalho To cite this version: M. Cortopassi-Laurino, M. Ramalho. POLLEN HARVEST BY AFRICANIZED APIS MELLIFERA AND TRIGONA SPINIPES IN SÃO PAULO BOTANICAL AND ECOLOGICAL VIEWS. Apidolo- gie, Springer Verlag, 1988, 19 (1), pp.1-24. hal-00890725 HAL Id: hal-00890725 https://hal.archives-ouvertes.fr/hal-00890725 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. POLLEN HARVEST BY AFRICANIZED APIS MELLIFERA AND TRIGONA SPINIPES IN SÃO PAULO BOTANICAL AND ECOLOGICAL VIEWS M. CORTOPASSI-LAURINO M. RAMALHO Departamento de Ecología Cera1 do lnstituto de Biociências da Universidade de São Paulo, 05508 São Paulo, Brasíl SUMMARY During one year, monthly samples of pollen were taken from one colony of Apis mellifera and one colony of Trigona spinipes. A great number of pollen types was observed in each of the samples (approximately 40), although few sources were intensively visited each month. T. spinipes collected significantly from Eucalyptus spp., Aloe sp. and Archontophoenix sp., and A. mellifera visited mainly Eucalyptus spp., Tipuana speciosa, Caesalpinia peltophoroides, Mikania glomerata and Cecropia sp.
    [Show full text]
  • Stingless Bee Nesting Biology David W
    Stingless bee nesting biology David W. Roubik To cite this version: David W. Roubik. Stingless bee nesting biology. Apidologie, Springer Verlag, 2006, 37 (2), pp.124-143. hal-00892207 HAL Id: hal-00892207 https://hal.archives-ouvertes.fr/hal-00892207 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 37 (2006) 124–143 124 c INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2006026 Review article Stingless bee nesting biology* David W. Ra,b a Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá b Unit 0948, APO AA 34002-0948, USA Received 2 October 2005 – Revised 29 November 2005 – Accepted 23 December 2005 Abstract – Stingless bees diverged since the Cretaceous, have 50 times more species than Apis,andare both distinctive and diverse. Nesting is capitulated by 30 variables but most do not define clades. Both architectural features and behavior decrease vulnerability, and large genera vary in nest habit, architecture and defense. Natural stingless bee colony density is 15 to 1500 km−2. Symbionts include mycophagic mites, collembolans, leiodid beetles, mutualist coccids, molds, and ricinuleid arachnids.
    [Show full text]
  • The Ovary and Its Genes-Developmental Processes Underlying the Establishment and Function of a Highly Divergent Reproductive
    The ovary and its genes-developmental processes underlying the establishment and function of a highly divergent reproductive system in the female castes of the honey bee, Apis mellifera Klaus Hartfelder, Gustavo Jacomini Tiberio, Denyse Cavalcante Lago, Rodrigo Pires Dallacqua, Marcia Maria Gentile Bitondi To cite this version: Klaus Hartfelder, Gustavo Jacomini Tiberio, Denyse Cavalcante Lago, Rodrigo Pires Dallacqua, Mar- cia Maria Gentile Bitondi. The ovary and its genes-developmental processes underlying the establish- ment and function of a highly divergent reproductive system in the female castes of the honey bee, Apis mellifera. Apidologie, 2018, 49 (1), pp.49-70. 10.1007/s13592-017-0548-9. hal-02973413 HAL Id: hal-02973413 https://hal.archives-ouvertes.fr/hal-02973413 Submitted on 21 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2018) 49:49–70 Review article * INRA, DIB and Springer-Verlag France SAS, 2017 DOI: 10.1007/s13592-017-0548-9 The ovary and its genes—developmental processes underlying the establishment and function of a highly divergent reproductive system in the female castes of the honey bee, Apis mellifera 1 1 1 Klaus HARTFELDER , Gustavo Jacomini TIBERIO , Denyse Cavalcante LAGO , 2 3 Rodrigo Pires DALLACQUA , Marcia Maria Gentile BITONDI 1Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av.
    [Show full text]
  • Unveiling the Contribution of Bee Pollinators to Brazilian Crops With
    Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management Tereza Cristina Giannini, Denise Araujo Alves, Ronnie Alves, Guaraci Duran Cordeiro, Alistair John Campbell, Marcelo Awade, José Maurício Simões Bento, Antonio Mauro Saraiva, Vera Lucia Imperatriz-Fonseca To cite this version: Tereza Cristina Giannini, Denise Araujo Alves, Ronnie Alves, Guaraci Duran Cordeiro, Alistair John Campbell, et al.. Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie, 2020, 51 (3), pp.406-421. 10.1007/s13592-019-00727-3. hal-03119623 HAL Id: hal-03119623 https://hal.archives-ouvertes.fr/hal-03119623 Submitted on 25 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:406–421 Original article * INRA, DIB and Springer-Verlag France SAS, part of Springer Nature, 2019 DOI: 10.1007/s13592-019-00727-3 Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management 1,2 3 1,4 Tereza Cristina GIANNINI , Denise
    [Show full text]
  • Impact of Aqueous Plant Extracts on Trigona Spinipes (Hymenoptera: Apidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal de Periódicos Eletrônicos da Universidade Estadual... 849 Impact of Aqueous Plant Extracts on Trigona spinipes (Hymenoptera: Apidae) by Maria Emilene Correia-Oliveira1*; Júlio César Melo Poderoso2; Adailton Freitas Ferreira3; Ricardo Alves de Olinda4 & Genésio Tâmara Ribeiro5 ABSTRACT The stingless bees are an important component of the insect biomass in many tropical areas, due to their collection of nectar and pollen. Trigona spinipes is a widely distributed species in South America, and described as a pollinator of many crops that can be used in a commercial pollinating system. The effects of plant extracts on insects are studied because of the demand for organic food and their selectivity to natural enemies. Plant insecticides are reported as a potential agent for the control of insect pests, however little is known about their impact on beneficial insects. This study investigated the survival of Trigona spinipes (Hymenoptera: Apidae, Meliponini) Fabricius, after exposure to the leaf extracts of Azadiracha indica (Meliaceae), Lippia sidoides (Verbenaceae), Sapindus saponaria (Sapindaceae), Anonna squamosa (Anonnaceae) Cymbopogon winterianum (Poaceae), Corimbia citriodora (Myrtaceae), Jatropha curcas (Euphorbiaceae) and Ricinus communis (Eu- phorbiaceae) and of seeds of Azadiracha indica, Ricinus communis Nordes- tina and AL Guarany varieties and Jatropha curcas. The extracts that had the greatest influence on the survival of the bees wereA. indica at 3% and 7% of concentration, A. squamosa at a concentration of 10% with 68.89% survival and green leaf of R. communis at a concentration of 7%. The results show that 1Programa de Pós-graduação em Entomologia da Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brasil.
    [Show full text]
  • Spatial Distribution of Arthropods on Acacia Mangium (Fabales: Fabaceae) Trees As Windbreaks in the Cerrado
    Spatial Distribution of Arthropods on Acacia mangium (Fabales: Fabaceae) Trees as Windbreaks in the Cerrado Authors: F. W. S. Silva, G. L. D. Leite, R. E. M. Guanabens, R. A. Sampaio, C. A. G. Gusmão, et. al. Source: Florida Entomologist, 97(2) : 631-638 Published By: Florida Entomological Society URL: https://doi.org/10.1653/024.097.0240 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Florida-Entomologist on 1/29/2019 Terms of Use: https://bioone.org/terms-of-use Silva et al.: Spatial Distribution of Arthropods on Acacia mangium 631 SPATIAL DISTRIBUTION OF ARTHROPODS ON ACACIA MANGIUM (FABALES: FABACEAE) TREES AS WINDBREAKS IN THE CERRADO 1,2* 1 1 1 1 3 F. W. S. SILVA , G. L. D. LEITE , R. E. M. GUANABENS , R. A. SAMPAIO , C. A. G. GUSMÃO AND J.
    [Show full text]
  • A Molecular Phylogeny and the Evolution of Nest Architecture and Behavior in Trigona S.S
    Apidologie 39 (2008) Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007051 Original article A molecular phylogeny and the evolution of nest architecture and behavior in Trigona s.s. (Hymenoptera: Apidae: Meliponini)* Claus Rasmussena,JoãoM.F.Camargob a Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Ave. Urbana, IL 61801, USA b Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil Received 29 June 2007 – Revised 28 October 2007 – Accepted 1 November 2007 Abstract – Stingless bees exhibit extraordinary variation in nest architecture within and among species. To test for phylogenetic association of behavioral traits for species of the Neotropical stingless bee genus Trigona s.s., a phylogenetic hypothesis was generated by combining sequence data of 24 taxa from one mitochondrial (16S rRNA) and four nuclear gene fragments (long-wavelength rhodopsin copy 1 (opsin), elongation factor-1α copy F2, arginine kinase, and 28S rRNA). Fifteen characteristics of the nest architec- ture were coded and tested for phylogenetic association. Several characters have significant phylogenetic signal, including type of nesting substrate, nest construction material, and hemipterophily, the tending of hemipteroid insects in exchange for sugar excretions. Phylogenetic independent habits encountered in Trig- ona s.s. include coprophily and necrophagy. molecular phylogeny / neotropical / stingless bee / behavior / nest 1. INTRODUCTION largest and most diverse group of social bees worldwide, the external nest entrance and in- Among the social bees there exists a bewil- ternal nest features often exhibit details that dering array of nest architecture and nesting allow for species-specific recognition (e.g., behavior, from the simple underground tun- Michener, 1959; Sakagami, 1982; Camargo nels of halictid bees to the elaborate structures and Pedro, 2003b; Franck et al., 2004).
    [Show full text]
  • Polarized Short Odor-Trail Recruitment Communication by a Stingless Bee, Trigona Spinipes
    Behav Ecol Sociobiol (2004) 56:435–448 DOI 10.1007/s00265-004-0804-7 ORIGINAL ARTICLE James C. Nieh · Felipe A. L. Contrera · Ryan R. Yoon · Lillian S. Barreto · Vera L. Imperatriz-Fonseca Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes Received: 9 December 2003 / Revised: 24 March 2004 / Accepted: 1 April 2004 / Published online: 20 May 2004 Springer-Verlag 2004 Abstract Polarized odor-trail communication, in which of the odor trails varied between different feeder loca- a receiver can orient towards the correct endpoint from tions with different colonies, from a minimum of 3 m to a within the trail, is documented in relatively few animals maximum of 29 m. The odor marks formed a polarized and is poorly understood, although such directionality trail that newcomers followed to the end with the most could significantly enhance resource localization. Among concentrated odor marks (the feeder), even when the animals, stingless bees exhibit the unique behavior of entire odor trail was rotated 180 and clean test feeders depositing long substrate-borne odor trails that assist were set out at locations that foragers had never previ- the orientation of flying nestmates to a specific three- ously fed at. Thus locale odor or the potential commu- dimensional food location. However, relatively little is nication of food location inside the nest do not account known about the spatial structure of such odor trails, for the ability of newcomers to find the correct terminus. particularly vertical trails, and whether these trails are This result provides the first strong evidence for odor- polarized to indicate the correct terminus.
    [Show full text]
  • The Use of Food Source Scent Marks by the Stingless Bee Trigona Corvina (Hymenoptera: Apidae): the Importance of the Depositor’S Identity1
    Apidologie 37 (2006) 366–375 © INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2006001 Original article The use of food source scent marks by the stingless bee Trigona corvina (Hymenoptera: Apidae): the importance of the depositor’s identity1 Neeltje Janna BOOGERTa*, Frouke Elisabeth HOFSTEDEa, Ingrid AGUILAR MONGEb a Utrecht University, Department of Behavioural Biology, Tropical Bee Research Unit, PO Box 80.086, 3508 TB Utrecht, The Netherlands b Universidad Nacional Costa Rica, Centro de Investigaciones Apícolas Tropicales, PO Box 475 – 3000, Heredia, Costa Rica, Centroamérica Received 18 August 2005 – revised 13 September 2005 – accepted 14 September 2005 Abstract – The deposition and use of scent marks on food sources has been found in foraging solitary bees, bumblebees, stingless bees and honeybees. The widespread existence of this communication mechanism points to its ecological significance. The importance of the depositor’s identity on the use of food source scent marks, however, has never been systematically investigated in the same bee species. Here we present strong evidence that individual foragers of the stingless bee species Trigona corvina scent marked a high quality food source and that they used their own scent marks to relocate it in choice experiments. T. corvina foragers showed a similar significant preference for a food source scent marked by their nest mates and by bees from a conspecific colony over a non-scent marked food source. However, no evidence for the use of scent marks deposited by other stingless bee species was found. The implications of these findings for the evolution of food source scent marking in bees are discussed.
    [Show full text]
  • Stingless Bee Floral Visitation in the Global Tropics and Subtropics
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.440550; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Stingless bee floral visitation in the global tropics and subtropics Francisco Garcia Bulle Bueno1, Liam Kendall2, Denise Araujo Alves3, Manuel Lequerica Tamara 4, Tim Heard, 1Tanya Latty5, Rosalyn Gloag1 1 Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Sydney NSW 2006, Australia. 2 Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, S-223 62 Lund, Sweden 3 Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, Brazil. 4 Integrative Ecology Lab, School of Life and Environmental Sciences A08, University of Sydney, Sydney NSW 2006, Australia. 5 Invertebrate Behaviour and Ecology Lab, School of Life and Environmental Sciences A08, University of Sydney, Sydney NSW 2006, Australia. Abstract Bees play a key role in maintaining healthy terrestrial ecosystems by pollinating plants. Stingless bees (Apidae: Meliponini) are a diverse clade of social bees (>500 species) with a pantropical distribution spanning South and Central America, Africa, India and Austral-Asia. They are garnering increasing attention as commercially-beneficial pollinators of some crops, yet their contribution to the pollination of native plants in the tropics and subtropics remains poorly understood. Here we conduct for the first time a global review of the plants visited by stingless bees.
    [Show full text]
  • Physiological and Genetic Mechanisms Underlying Caste Development, Reproduction and Division of Labor in Stingless Bees Klaus Hartfelder, Gustavo R
    Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees Klaus Hartfelder, Gustavo R. Makert, Carla C. Judice, Gonçalo A.G. Pereira, Weyder C. Santana, Rodrigo Dallacqua, Márcia M.G. Bitondi To cite this version: Klaus Hartfelder, Gustavo R. Makert, Carla C. Judice, Gonçalo A.G. Pereira, Weyder C. Santana, et al.. Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie, Springer Verlag, 2006, 37 (2), pp.144-163. hal-00892195 HAL Id: hal-00892195 https://hal.archives-ouvertes.fr/hal-00892195 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 37 (2006) 144–163 © INRA/DIB-AGIB/ EDP Sciences, 2006 144 DOI: 10.1051/apido:2006013 Review article Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees Klaus HARTFELDERa*, Gustavo R. MAKERTb, Carla C. JUDICEc, Gonçalo A.G. PEREIRAc, Weyder C. SANTANAd, Rodrigo DALLACQUAd, Márcia
    [Show full text]