BSAI Sculpins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cottus Poecilopus Heckel, 1836, in the River Javorin- Ka, the Tatra
Oecologia Montana 2018, Cottus poecilopus Heckel, 1836, in the river Javorin- 27, 21-26 ka, the Tatra mountains, Slovakia M. JANIGA, Jr. In Tatranská Javorina under Muráň mountain, a small fish nursery was built by Christian Kraft von Institute of High Mountain Biology University of Hohenlohe around 1930. The most comprehensive Žilina, Tatranská Javorina 7, SK-059 56, Slovakia; studies on fish from the Tatra mountains were writ- e-mail:: [email protected] ten by professor Václav Dyk (1957; 1961), Dyk and Dyková (1964a,b; 1965), who studied altitudinal distribution of fish, describing the highest points where fish were found. His studies on fish were likely the most complex studies of their kind during that period. Along with his wife Sylvia, who illus- Abstract. This study focuses on the Cottus poe- trated his studies, they published the first realistic cilopus from the river Javorinka in the north-east studies on fish from the Tatra mountains including High Tatra mountains, Slovakia. The movement the river Javorinka (Dyk and Dyková 1964a). Feri- and residence of 75 Alpine bullhead in the river anc (1948) published the first Slovakian nomenclature were monitored and carefully recorded using GPS of fish in 1948. Eugen K. Balon (1964; 1966) was the coordinates. A map representing their location in next famous ichthyologist who became a recognised the river was generated. This data was collected in expert in the fish fauna of the streams of the Tatra the spring and summer of 2016 and in the autumn mountains, the river Poprad, and various high moun- of 2017. Body length and body weight of 67 Alpine tain lakes. -
KLMN Featured Creature Sculpins
National Park Service Featured Creature U.S. Department of the Interior February 2021 Klamath Network Inventory & Monitoring Division Natural Resources Stewardship & Science Sculpins Cottidae General Description Habitat and Distribution Darting low through tide pools or lurking Sculpins occur in both marine and freshwater in stream bottoms, members of the large habitats of North America, Europe, and Asia, fish family, Cottidae, are commonly called with just a few marine species in the southern USFWS/ROGER TABOR sculpins. They also go by “bullhead” or “sea hemisphere. Most abundant in the North Prickly sculpin (Cottus asper) scorpion,” and even some very unflattering Pacific, they tend to frequent shallow water terms, like “double uglies.” You’re not likely and tide pools. In North American coldwa- to catch one on your fishing line, but if you ter streams, they overlap the same habitat as them to keep them oxygenated until they look carefully into ocean tide pools, you trout and salmon, including small headwater hatch a few weeks later into baby fish, known may spot these well camouflaged creatures streams, lakes, and rocky areas of lowland as fry. The fry will be sexually mature in time moving around the bottom. Most of the more rivers. Freshwater sculpin are sometimes the for the next breeding season. than 250–300 known species in this family are only abundant fish species in streams. Inland marine, though some live in freshwater. species found in Pacific Northwest streams Fun Facts include the riffle sculpin (Cottus gulosus), • Some sculpins are able to compress their Generally, sculpins are bottom-dwelling prickly sculpin (Cottus asper), and coastrange skull bones to fit inside small spaces. -
Cytochemical Features of Olfactory Receptor Cells in Benthic and Pelagic Sculpins (Cottoidei) from Lake Baikal
Arch Biol Sci. 2016;68(2):345-353 DOI:10.2298/ABS150701026K CYTOCHEMICAL FEATURES OF OLFACTORY RECEPTOR CELLS IN BENTHIC AND PELAGIC SCULPINS (COTTOIDEI) FROM LAKE BAIKAL Igor V. Klimenkov1,2,*, Nikolay P. Sudakov2,3,4, Mikhail V. Pastukhov5 and Nikolay S. Kositsyn6 1 Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033 Russia 2 Irkutsk State University, 1 Karl Marx St., Irkutsk, 664003 Russia 3 Scientific Center for Reconstructive and Restorative Surgery, Siberian Branch, Russian Academy of Medical Sciences, 1 Bortsov Revolyutsii St., Irkutsk, 664003 Russia 4 Irkutsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Lermontov St. 134, Irkutsk, 664033, Russia 5 Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a Favorsky St., Irkutsk, 664033 Russia 6 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova St., Moscow 117485 *Corresponding author: [email protected] Received: July 1, 2015; Revised: August 17, 2015; Accepted: October 6, 2015; Published online: March 21, 2016 Abstract: Electron and laser confocal microscopy were used to analyze the adaptive cytochemical features of the olfactory epithelium in three genetically close deep-water Cottoidei species endemic to Lake Baikal − golomyanka (Baikal oilfish) Comephorus baicalensis, longfin Baikal sculpin Cottocomephorus inermis and fat sculpin Batrachocottus nikolskii − whose foraging strategies are realized under different hydrostatic pressure regimes. Hypobaric hypoxia that developed in B. nikol- skii (a deep-water benthic species) upon delivery to the surface caused distinct destructive changes in cells of the olfactory epithelium. In C. baicalensis and C. inermis, whose foraging behavior involves daily vertical migrations between deep and shallow layers, these cells are characterized by a significantly higher structural and functional stability than in deep-water B. -
Eye Histology of the Tytoona Cave Sculpin: Eye Loss Evolves Slower Than Enhancement of Mandibular Pores in Cavefish?
McCaffery et al. Eye histology of the Tytoona Cave Sculpin: Eye loss evolves slower than enhancement of mandibular pores in cavefish? Sean McCaffery1, Emily Collins2 and Luis Espinasa3 School of Science, Marist College, 3399 North Rd, Poughkeepsie, New York 12601, USA 1 [email protected] 2 [email protected] [email protected] (corresponding author) Key Words: Cottus bairdi, Cottus cognatus, Cottidae, Scorpaeniformes, Actinopterygii, Tytoona Cave Nature Preserve, Sinking Valley, Blair County, Pennsylvania, troglobite, eye histology, mandibular pore. Despite the presence of caves in northern latitudes above 40–50ºN that would typically be considered suitable environments for cave-adapted fish, stygobiotic fish are absent from these locations (Romero and Paulsen 2001; Proudlove 2001). One factor that likely hindered the distribution of cavefish in these areas was the migration of polar ice sheets during the Wisconsinan Period, which occurred approximately 20,000 years ago. The glaciers covered the majority of the Northern Hemisphere until about 12,000 years ago, making many caves in the region uninhabitable for fish until the period ended (Flint 1971). Presently, the northernmost cave-adapted fish in the world is the Nippenose Cave Sculpin of the Cottus bairdi-cognatus complex (Espinasa and Jeffery 2003) (Actinopterygii: Scorpaeniformes: Cottidae), found at 41º 9’ N, in caves of the Nippenose Valley, in Lycoming County, Central Pennsylvania. In some taxonomic databases and the genetic data repository GenBank, this taxon referred to as Cottus sp. 'Nippenose Valley' (Pennsylvania Grotto Sculpin). Here, we discuss a second population different from Nippenose Cave Sculpin. We refer to this population from Tytoona Cave, Pennsylvania, as the Tytoona Cave Scuplin. -
Biological Collections from the Marine Ecosystem
CHAPTER 10 Biological Collections From The Marine Ecosystem SUMMARY Understanding the biological environment around DOE sites is critical to determining whether receptors could be exposed to radionuclides or other contaminants and to identify prospective bioindicator species. With our sampling methods we were able to address three questions that are key to understanding the biota in marine environments and potential risk to consumers, including humans: 1) Are there organisms present that would be exposed if there were seepage, and that could be used for future biomonitoring of Amchitka, 2) Are there differences in species present in the benthic environment around Amchitka and at Kiska (reference site), in the intertidal species, and in the seabirds that use these resources, and 3) Can the sampling methods normally employed by researchers result in catching the same size fish as are caught by Aleut fishermen and trawl sampling? The same avian bioindicators and intertidal organisms were present in the marine environments around all three test shots and at Kiska. There was a wide range of species present in the marine benthic environment. Some species were present in over 50 % of our benthic sampling stations, and at all of our intertidal sampling sites, indicating that adequate coverage of the benthic marine environment is possible. Our sampling regime in the intertidal and benthic environments allowed us to compare the biological environment of Amchitka and Kiska Islands even though examining biodiversity of the marine ecosystems was not one of our main objectives. We collected a wide range of target species from the transects adjacent to all three test shots, and at Kiska. -
Alaska Fisheries Science Center Quarterly Reports for April-May
DIVISION/LABORATORY REPORTS AUKE BAY LABORATORIES for explaining the decline in harbor seal populations (as well as other marine mammal populations in MARINE SALMON INTERACTIONS Alaska). In response to this trend, the Habitat and Marine Chemistry Program’s Nutritional Ecology Record Snowfall at Little Port Walter Laboratory at Auke Bay Laboratories is collaborat- The winter of 2006-07 at Little Port Walter ing with the Alaska Department of Fish and Game (LPW) Field Station was the snowiest on record. (ADF&G) to investigate the relationship between The winter saw 4 days of snowfalls greater than 2 regional trends and diets by analyzing the fatty acid feet and 1 day of almost 4.5 feet. Total snowfall (FA) composition of harbor seal blubber. (measured once daily) through 12 April 2007 was Inferring marine mammal diet from scat or stom- 268 inches, almost 30 inches more than the next ach contents is logistically difficult and may yield highest snowfall recorded in 1973-74. The burden biased results. Fatty acid patterns of prey species are of dealing with all of that snow fell to station staff reflected in the storage lipids of their predators, thus Pat Malecha, Dan Koenig, and Andy Gray who inferences can be made about an animal’s diet and shoveled snow throughout the night on more than foraging ecology. Blubber samples taken from free- one occasion to keep floats from sinking and main- ranging animals can supply information about diet tain the integrity of over 90 populations of Chinook that is not limited to the last meal or dependent on salmon, steelhead trout, and rockfish used in LPW’s the recovery and identification of undigested mate- many research projects. -
Table of Contents
Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
XIV. Appendices
Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS. -
Table of Contents
Table of Contents Chapter 3f Alaska Arctic Marine Fish Species Structure of Species Account……………………………………………………….2 Bigeye sculpin…………………………………………………………………..…10 Ribbed Sculpin……………………………………………………………………..14 Crested Sculpin……………………………………………………………………..20 Eyeshade Sculpin…………………………………………………………………...25 Polar Sculpin………………………………………………………………………..29 Smoothcheek Sculpin……………………………………………………………….33 Alligatorfish…………………………………………………………………………37 Arctic Alligatorfish………………………………………………………………….43 Chapter 3. Alaska Arctic Marine Fish Species Accounts By Milton S. Love1, Nancy Elder2, Catherine W. Mecklenburg3, Lyman K. Thorsteinson2, and T. Anthony Mecklenburg4 Abstract Although tailored to address the specific needs of BOEM Alaska OCS Region NEPA analysts, the information presented Species accounts provide brief, but thorough descriptions in each species account also is meant to be useful to other about what is known, and not known, about the natural life users including state and Federal fisheries managers and histories and functional roles of marine fishes in the Arctic scientists, commercial and subsistence resource communities, marine ecosystem. Information about human influences on and Arctic residents. Readers interested in obtaining additional traditional names and resource use and availability is limited, information about the taxonomy and identification of marine but what information is available provides important insights Arctic fishes are encouraged to consult theFishes of Alaska about marine ecosystem status and condition, seasonal patterns -
A List of Common and Scientific Names of Fishes from the United States And
t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature. -
Full Document (Pdf 2154
White Paper Research Project T1803, Task 35 Overwater Whitepaper OVERWATER STRUCTURES: MARINE ISSUES by Barbara Nightingale Charles A. Simenstad Research Assistant Senior Fisheries Biologist School of Marine Affairs School of Aquatic and Fishery Sciences University of Washington Seattle, Washington 98195 Washington State Transportation Center (TRAC) University of Washington, Box 354802 University District Building 1107 NE 45th Street, Suite 535 Seattle, Washington 98105-4631 Washington State Department of Transportation Technical Monitor Patricia Lynch Regulatory and Compliance Program Manager, Environmental Affairs Prepared for Washington State Transportation Commission Department of Transportation and in cooperation with U.S. Department of Transportation Federal Highway Administration May 2001 WHITE PAPER Overwater Structures: Marine Issues Submitted to Washington Department of Fish and Wildlife Washington Department of Ecology Washington Department of Transportation Prepared by Barbara Nightingale and Charles Simenstad University of Washington Wetland Ecosystem Team School of Aquatic and Fishery Sciences May 9, 2001 Note: Some pages in this document have been purposefully skipped or blank pages inserted so that this document will copy correctly when duplexed. TECHNICAL REPORT STANDARD TITLE PAGE 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. WA-RD 508.1 4. TITLE AND SUBTITLE 5. REPORT DATE Overwater Structures: Marine Issues May 2001 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO. Barbara Nightingale, Charles Simenstad 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Washington State Transportation Center (TRAC) University of Washington, Box 354802 11. CONTRACT OR GRANT NO. University District Building; 1107 NE 45th Street, Suite 535 Agreement T1803, Task 35 Seattle, Washington 98105-4631 12.