Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microrna Let-7E in the Mouse Prefrontal Cortex Differentiates Restraint-Stress-Resilient Genotypes from Susceptible Genotype
International Journal of Molecular Sciences Article MicroRNA Let-7e in the Mouse Prefrontal Cortex Differentiates Restraint-Stress-Resilient Genotypes from Susceptible Genotype Joanna Solich 1,* , Magdalena Kolasa 1, Agata Faron-Górecka 1 , Jacek Hajto 2, Marcin Piechota 2 and Marta Dziedzicka-Wasylewska 1 1 Laboratory of Biochemical Pharmacology, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Sm˛etnaStreet 12, 31-343 Kraków, Poland; [email protected] (M.K.); [email protected] (A.F.-G.); [email protected] (M.D.-W.) 2 Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Sm˛etnaStreet 12, 31-343 Kraków, Poland; [email protected] (J.H.); [email protected] (M.P.) * Correspondence: [email protected] Abstract: Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress- coping strategies. We identified 14 miRNAs that were altered by RS in the PFC of these mice in a genotype-dependent manner, where the most interesting was let-7e. Further in silico analysis of its potential targets allowed us to identify five mRNAs (Bcl2l11, Foxo1, Pik3r1, Gab1 and Map2k4), and Citation: Solich, J.; Kolasa, M.; their level alterations were experimentally confirmed. A next-generation sequencing (NGS) approach, Faron-Górecka, A.; Hajto, J.; Piechota, which was employed to find transcripts differentially expressed in the PFC of NET-KO and WT mice, M.; Dziedzicka-Wasylewska, M. -
Exome Sequencing Reveals Cubilin Mutation As a Single-Gene Cause of Proteinuria
BRIEF COMMUNICATION www.jasn.org Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria Bugsu Ovunc,*† Edgar A. Otto,* Virginia Vega-Warner,* Pawaree Saisawat,* Shazia Ashraf,* Gokul Ramaswami,* Hanan M. Fathy,‡ Dominik Schoeb,* Gil Chernin,* Robert H. Lyons,§ ʈ Engin Yilmaz,† and Friedhelm Hildebrandt* ¶ ʈ Departments of *Pediatrics and Human Genetics, §Department of Biological Chemistry and DNA Sequencing Core, and ¶Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; †Department of Medical Biology, Hacettepe University, Ankara, Turkey; and ‡The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt ABSTRACT In two siblings of consanguineous parents with intermittent nephrotic-range pro- tion is still unknown.7 This forbids the use of teinuria, we identified a homozygous deleterious frameshift mutation in the gene cohort studies for gene identification and ne- CUBN, which encodes cubulin, using exome capture and massively parallel re- cessitates the ability to identify disease-caus- sequencing. The mutation segregated with affected members of this family and ing genes in single families. We therefore was absent from 92 healthy individuals, thereby identifying a recessive mutation in combined whole genome homozygosity CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations mapping with consecutive whole human ex- cause a hereditary form of megaloblastic anemia secondary to vitamin B12 defi- ome capture (WHEC) and massively par- ciency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both allel re-sequencing to overcome this lim- 6 the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of itation. In this way we here identify a protein in the proximal tubule. -
Detailed Investigations of Proximal Tubular Function in Imerslund-Grasbeck Syndrome
Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome. Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, Mette Madsen, Jean-François Benoist, Sandrine Passemard, Sophie Lebon, Iben Jønsson, et al. To cite this version: Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, et al.. Detailed in- vestigations of proximal tubular function in Imerslund-Grasbeck syndrome.. BMC Medical Genetics, BioMed Central, 2013, 14 (1), pp.111. 10.1186/1471-2350-14-111. inserm-00904107 HAL Id: inserm-00904107 https://www.hal.inserm.fr/inserm-00904107 Submitted on 13 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCHARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. -
Detailed Investigations of Proximal Tubular Function in Imerslund-Gräsbeck Syndrome
Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCH ARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. IGS is caused by mutations in either of the genes encoding the intestinal intrinsic factor-vitamin B12 receptor complex, cubam. The cubam receptor proteins cubilin and amnionless are both expressed in the small intestine as well as the proximal tubules of the kidney and exhibit an interdependent relationship for post-translational processing and trafficking. In the proximal tubules cubilin is involved in the reabsorption of several filtered plasma proteins including vitamin carriers and lipoproteins. Consistent with this, low-molecular-weight proteinuria has been observed in most patients with IGS. The aim of this study was to characterise novel disease-causing mutations and correlate novel and previously reported mutations with the presence of low-molecular-weight proteinuria. Methods: Genetic screening was performed by direct sequencing of the CUBN and AMN genes and novel identified mutations were characterised by in silico and/or in vitro investigations. Urinary protein excretion was analysed by immunoblotting and high-resolution gel electrophoresis of collected urines from patients and healthy controls to determine renal phenotype. -
CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells with an Increased Cytotoxic Potential
+ CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells. -
Gene Expression Analysis Defines the Proximal Tubule As the Compartment for Endocytic Receptor-Mediated Uptake in the Xenopus Pronephric Kidney
Pflugers Arch - Eur J Physiol (2008) 456:1163–1176 DOI 10.1007/s00424-008-0488-3 MOLECULAR AND GENOMIC PHYSIOLOGY Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney Erik I. Christensen & Daniela Raciti & Luca Reggiani & Pierre J. Verroust & André W. Brändli Received: 16 January 2008 /Accepted: 28 February 2008 /Published online: 13 June 2008 # Springer-Verlag 2008 Abstract Endocytic receptors in the proximal tubule of the lrp2 and cubilin in the apical plasma membrane. Further- mammalian kidney are responsible for the reuptake of more, functional aspects of the endocytic receptors were numerous ligands, including lipoproteins, sterols, vitamin- revealed by the vesicular localization of retinol-binding binding proteins, and hormones, and they can mediate protein in the proximal tubules, probably representing drug-induced nephrotoxicity. In this paper, we report the endocytosed protein. In summary, we provide here the first first evidence indicating that the pronephric kidneys of comprehensive report of endocytic receptor expression, Xenopus tadpoles are capable of endocytic transport. We including amnionless, in a nonmammalian species. Re- establish that the Xenopus genome harbors genes for the markably, renal endocytic receptor expression and function known three endocytic receptors megalin/LRP2, cubilin, in the Xenopus pronephric kidney closely mirrors the and amnionless. The Xenopus endocytic receptor genes situation in the mammalian kidney. The Xenopus proneph- share extensive synteny with their mammalian counterparts. ric kidney therefore represents a novel, simple model for In situ hybridizations demonstrated that endocytic receptor physiological studies on the molecular mechanisms under- expression is highly tissue specific, primarily in the lying renal tubular endocytosis. -
Genetic Heterogeneity of Megaloblastic Anaemia Type 1 in Tunisian Patients
J Hum Genet (2007) 52:262–270 DOI 10.1007/s10038-007-0110-0 ORIGINAL ARTICLE Genetic heterogeneity of megaloblastic anaemia type 1 in Tunisian patients Chiraz Bouchlaka Æ Chokri Maktouf Æ Bahri Mahjoub Æ Abdelkarim Ayadi Æ M. Tahar Sfar Æ Mahbouba Sioud Æ Neji Gueddich Æ Zouheir Belhadjali Æ Ahmed Rebaı¨ Æ Sonia Abdelhak Æ Koussay Dellagi Received: 2 August 2006 / Accepted: 21 December 2006 / Published online: 7 February 2007 Ó The Japan Society of Human Genetics and Springer 2007 Abstract Megaloblastic anaemia 1 (MGA1) is a rare geneous and can be caused by mutations in either the autosomal recessive condition characterized by selec- cubilin (CUBN) or the amnionless (AMN) gene. In tive intestinal vitamin B12 malabsorption and pro- the present study we investigated the molecular defect teinuria. More than 200 MGA1 patients have been underlying MGA1 in nine Tunisian patients belonging identified worldwide, but the disease is relatively to six unrelated consanguineous families. Haplotype prevalent in Finland, Norway and several Eastern and linkage analyses, using microsatellite markers Mediterranean regions. MGA1 is genetically hetero- surrounding both CUBN and AMN genes, indicated that four out of the six families were likely to be linked to the CUBN gene. Patients from these fami- C. Bouchlaka Á C. Maktouf Á S. Abdelhak (&) lies were screened for the Finnish, Mediterranean and Molecular Investigation of Genetic Orphan Diseases, Arabian mutations already published. None of the Institut Pasteur de Tunis, BP 74, 13 Place Pasteur 1002, screened mutations could be detected in our popula- Tunis Belve´de`re, Tunisia tion. One family showed a linkage to AMN gene. -
Deciphering the Molecular Profile of Plaques, Memory Decline And
ORIGINAL RESEARCH ARTICLE published: 16 April 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00075 Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing Yvonne Bouter 1†,Tim Kacprowski 2,3†, Robert Weissmann4, Katharina Dietrich1, Henning Borgers 1, Andreas Brauß1, Christian Sperling 4, Oliver Wirths 1, Mario Albrecht 2,5, Lars R. Jensen4, Andreas W. Kuss 4* andThomas A. Bayer 1* 1 Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Goettingen, Germany 2 Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Greifswald, Germany 3 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany 4 Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany 5 Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria Edited by: One of the central research questions on the etiology of Alzheimer’s disease (AD) is the Isidro Ferrer, University of Barcelona, elucidation of the molecular signatures triggered by the amyloid cascade of pathological Spain events. Next-generation sequencing allows the identification of genes involved in disease Reviewed by: Isidro Ferrer, University of Barcelona, processes in an unbiased manner. We have combined this technique with the analysis of Spain two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneu- Dietmar R. Thal, University of Ulm, ronal Ab aggregation, neuron loss, and behavioral deficits. (2)TheTg4–42 model expresses Germany N-truncated Ab4–42 and develops neuron loss and behavioral deficits albeit without plaque *Correspondence: formation. -
Molecular Diagnosis of Inherited Peripheral Neuropathies by Targeted Next-Generation Sequencing: Molecular Spectrum Delineation
Open access Research BMJ Open: first published as 10.1136/bmjopen-2018-021632 on 28 October 2018. Downloaded from Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: molecular spectrum delineation Juliette Bacquet,1 Tanya Stojkovic,2 Amandine Boyer,1 Nathalie Martini,1 Frédérique Audic,3 Brigitte Chabrol,3 Emmanuelle Salort-Campana,4,5 Emilien Delmont,4 Jean-Pierre Desvignes,5 Annie Verschueren,4 Shahram Attarian,4,5 Annabelle Chaussenot,6 Valérie Delague,5 Nicolas Levy,1,5 Nathalie Bonello-Palot1,5 To cite: Bacquet J, Stojkovic T, ABSTRACT Strengths and limitations of this study Boyer A, et al. Molecular Purpose Inherited peripheral neuropathies (IPN) represent diagnosis of inherited a large heterogenous group of hereditary diseases with peripheral neuropathies by ► First study concerning patients with inherited pe- more than 100 causative genes reported to date. In this targeted next-generation ripheral neuropathies in South of France. context, targeted next-generation sequencing (NGS) sequencing: molecular spectrum ► New single-nucleotide variation mutations important delineation. BMJ Open offers the opportunity to screen all these genes with high for the scientific and medical community. 2018;8:e021632. doi:10.1136/ efficiency in order to unravel the genetic basis of the ► New copy number variations detected by the analy- bmjopen-2018-021632 disease. Here, we compare the diagnostic yield of targeted sis of next-generation sequencing data. NGS with our previous gene by gene Sanger sequencing ► Prepublication history and ► Lack of power (123 patients). additional material for this strategy. We also describe several novel likely pathogenic ► Lack of functional validation of variants of unknown paper are available online. -
M1BP Cooperates with CP190 to Activate Transcription at TAD Borders and Promote Chromatin Insulator Activity
ARTICLE https://doi.org/10.1038/s41467-021-24407-y OPEN M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity Indira Bag 1,2, Shue Chen 1,2,4, Leah F. Rosin 1,2,4, Yang Chen 1,2, Chen-Yu Liu3, Guo-Yun Yu3 & ✉ Elissa P. Lei 1,2 1234567890():,; Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional inter- action between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization. 1 Nuclear Organization and Gene Expression Section, Bethesda, MD, USA. 2 Laboratory of Biochemistry and Genetics, Bethesda, MD, USA. 3 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. ✉ 4These authors contributed equally: Shue Chen, Leah F. -
Measuring the Cohesiveness of Multi-Depth Inner Class
Journal of Theoretical and Applied Information Technology 31st January 2013. Vol. 47 No.3 © 2005 - 2013 JATIT & LLS. All rights reserved. ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 ANALYSIS OF THE MONO-, DI-, AND TRINUCLEOTIDE TANDEM REPEATS IN INF2 OF GLOMERULAR PODOCYTE SIM-HUI TEE Multimedia University, Cyberjaya, Malaysia E-mail: [email protected] ABSTRACT Inverted formin 2 (INF2) is an essential gene that is expressed in glomerular podocyte in kidney. Malfunction in INF2 will result in kidney diseases, which could be avoided if the mechanisms of its transcription and translation are well-studied. This research aims to use a computational approach to understand the tandem repeats, which is a phenomenon closely linked with diseases, in this gene. A genome database, web server, and a computational motif model were primarily used in this research. The results of this study provide insights that will guide biologists and biomedical practitioners in molecular studies and drug designs for the INF2-implicated diseases. Keywords: Bioinformatics, Java Programming, Database, Tandem Repeats, INF2, Glomerular Podocyte, Gene Analysis 1. INTRODUCTION Inverted formin 2 (INF2) gene, which is located on chromosome 14 of human genome, is the most Glomerular podocytes are unique renal cell with crucial gene that is expressed in glomerular a complex cytoarchitecture. Coupled with podocyte. The tandem repeats of mono-, di-, and glomerular basement membrane, they form the trinucleotide of INF2 will be analyzed to study the glomerular filtration barrier which prevents protein potential aberration of the glomerular podocyte. leakage into urine filtrates [1]. Though it was Tandem repeats are gene motifs that occur in a postulated that glomerular podocytes play an repeating fashion, which is ubiquitous in organisms essential role in establishing the specific and they can occur at any location on a gene [6]. -
The Benefits of Tubular Proteinuria: an Evolutionary Perspective
PERSPECTIVES www.jasn.org The Benefits of Tubular Proteinuria: An Evolutionary Perspective Matias Simons Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France; and Imagine Institute, Université Paris- Descartes-Sorbonne Paris Cité, Paris, France J Am Soc Nephrol 29: 710–712, 2018. doi: https://doi.org/10.1681/ASN.2017111197 Constituting more than one half of renal “accessible” for toxins delivered by serum disorder causing facial dysmorphia, mass, the proximal tubule is the main proteins. Albumin’s partners in crime are vision, and hearing problems among reabsorptive segment of the nephron. megalin (gene name: LRP2), cubilin (gene other symptoms. CUBN and AMN, Proximal tubular cells (PTCs) take up name: CUBN), and amnionless (gene however, are both causative genes for almost all macromolecules filtered name: AMN), which form a receptor Imerslund–Gräsbeck syndrome (IGS; by the neighboring glomerulus, making complex mediating most of the protein Online Mendelian Inheritance in Man: use of a dense brush border and a dedi- uptake from the luminal side. 261100). This disease is a rare autosomal cated endocytic apparatus. The energy to With all of this stress brought inside, recessive disorder initially described in achieve this tremendous task is provided why is it at all desirable for the PTCs to Scandinavia that is characterized by a se- by a high number of mitochondria that reabsorb so many proteins? It can first be lective vitamin B(12) malabsorption, re- mainly use fatty acids as metabolic fuels. argued that the proteins need to be recy- sulting in megaloblastic anemia, which The high energy demand makes PTCs cled.