The Gastrointestinal Tract and Intraabdominal Organs

Total Page:16

File Type:pdf, Size:1020Kb

The Gastrointestinal Tract and Intraabdominal Organs The Gastrointestinal Tract and Intraabdominal Organs Normal Anatomy of the Meconium Peritonitis/ 243 Gastrointestinal Tract and the Hirschsprung's Disease/ 245 Anterior Abdominal Wall/ 233 Splenomegaly/ 246 Esophageal Atresia with and without Hepatomegaly/ 249 Tracheoesophageal Fistula/ 234 Choledochal Cyst/ 251 Duodenal Atresia/ 236 Mesenteric, Omental, and Bowel Obstruction/ 239 Retroperitoneal Cysts/ 253 Normal Anatomy of the Gastrointestinal Tract and the Anterior Abdominal Wall The stomach forms at about 4 weeks after conception are characterized by vigorous and fleeting movements by the development of a spindle-shaped dilatation of with a duration of less than 3 seconds. Later in the foregut caudal to the esophagus. The stomach gestation, peristaltic waves are more vigorous, descends into the abdomen at about 6 to 7 weeks after ubiquitous, and of longer duration. A small bowel conception, and by 11 weeks the muscles in its wall loop of more than 7 mm in internal diameter should are developed. Visualization with ultrasound is raise the index of suspicion for bowel obstruction.4 possible as early as the 9th week of menstrual age. Generally, segments of small bowel measure less than Different parts of the gastric anatomy (greater 15 mm in length. Meconium formation begins at 16 to curvature, fundus, body, and pylorus) can be seen by 20 weeks of menstrual age. Sonographically, the 14th week. Peristalsis is rarely visible before the meconium appears hypoechogenic in comparison to 16th week. Table 7-7 (see p. 254) displays data on the bowel wall. The large bowel appears as a large fetal stomach dimensions. Observations of this organ tubular structure in the periphery of the fetal abdomen. over a 3-hour period of time have demonstrated that Haustral clefts are sonographically apparent at 30 there are no dramatic changes in size and therefore weeks in 87 percent of the fetuses and in all cases at 31 these dimensions should be useful in evaluating weeks of menstrual age. Table 7-8 (see p. 254) shows stomach size.3 On occasion, an echogenic mass (fetal the correlation between transverse colonic diameter gastric pseudomass) is seen within the fetal stomach. and gestational age. The echogenicity of the colon is The origin of this monographic image is not clear. If it assessed and graded in comparison with bladder and disappears on subsequent examinations, it has no liver echogenicity. Grade 0 means the abdomen is proven pathologic significance.1 uniform in appearance and the colon is not identified. The small and large bowels can be distinguished Grade 1, the colonic appearance is hypoechogenic and from each other. The small bowel is centrally located, essentially identical to the stomach and bladder. and it changes its position and appearance with Haustra may be identified. Grade 2, the echogenicity peristalsis, which is visible as early as the 18th week of the colon is greater than the bladder, but less than of menstrual age. Early in gestation, peristaltic waves the liver. Grade 3, colonic 233 234 THE GASTROINTESTINAL TRACT AND INTRAABDOMINAL ORGANS ©1987-2002 Romero-Pilu-Jeanty-Ghidini-Hobbins content has echogenicity similar to the liver. Grade 2 ductus venosus is inconsistently visible in physiologic appears at 29 weeks and Grade 3 begins after 34 weeks circumstances. The ductus venosus drains into the left of menstrual age.2 hepatic vein or directly into the inferior vena cava. The pancreas can be seen in the third trimester in The portal system is best seen in transverse scans fetuses with the spine down. It can be found behind of the fetus, whereas the hepatic veins are better the stomach and in front of the splenic vein. visualized in longitudinal or oblique scans. The The gallbladder is a hypoechogenic structure in the hepatic veins can be seen when they enter the distal middle right of the abdomen. It is often confused with inferior vena cava near the right atrium. the umbilical vein. They can be differentiated because The aorta and its bifurcation into the common iliac (1) the gallbladder is right-sided and not median, (2) vessels are usually visible. The internal iliac vessels the umbilical vein can be traced outside the fetus into are more difficult to visualize, but their main branches, the umbilical cord and inside the liver to the portal the umbilical arteries, can commonly be seen along the system, and (3) the gallbladder neck is thinner than its fetal bladder. The external iliac arteries can be bottom, and, therefore, the gallbladder is conical, followed into the femoral artery. which contrasts with the cylindrical umbilical vein. The inferior vena cava is visible adjacent to the Absence of the gallbladder occurs in rare aorta. In the higher abdomen, the inferior vena cava chromosomal syndromes (G syndrome) and in about can be observed to be more anterior than the aorta. 20 percent of patients with biliary atresia. This is because the inferior vena cava bends anteriorly The size of the liver is affected by fetal nutrition. to enter the right atrium, whereas the aorta comes from There are four ductal systems in the liver: the portal the posterior aspect of the chest after ending the arch. circulation, the hepatic veins, the hepatic arteries, and The major collaterals of the inferior vena cava, visible the biliary ducts. The last two cannot be seen under with ultrasound, are the renal, hepatic, and iliac veins. normal circumstances. The umbilical vein courses cephalically after entering the abdomen, then follows REFERENCES the falciform ligament and enters the liver, where it receives blood from the venae advehentes. It 1. Fakhry J, Shapiro LR, Schechter A, et al.: Fetal gastric anastomoses with the left portal vein. The umbilical pseudomasses. J Ultrasound Med. 6:177, 1987. vein is, in fact, the left umbilical vein, since the right 2. Goldstein I, Lockwood C, Hobbins, IC: Ultrasound umbilical vein regresses around the 6th to 7th week. assessment of fetal intestinal development in the evaluation of gestational age. Obstet Gynecol (in press), From the junction with the left portal vein, the 1987. umbilical vein is called the "umbilical part of the left 3. Goldstein I, Reece EA, Yarkoni S, et al.: Growth of the portal vein." The oxygenated blood may reach the fetal stomach in normal pregnancies. Obstet Gynecol heart through the ductus venosus or the hepatic 70:(in press), 1987. sinusoids and hepatic veins. The sphincter at the 4. Nyberg DA, Mack LA, Patten RM, Cyr DR: Fetal bowel: origin of the ductus venosus is believed to protect the Normal sonographic findings. J Ultrasound Med 6:3, fetal heart from overload when uterine contractions 1987. increase the placental venous return. This also explains why the Esophageal Atresia with and without Tracheoesophageal Fistula Definition Epidemiology Esophageal atresia is the absence of a segment of the The incidence of esophageal atresia varies between esophagus. In most cases, this condition is associated 1:8001, and 1:5,000 live births.7,11 There is no with a fistula between the gastrointestinal and established sex preponderance. respiratory tracts. Embryology Etiology The esophagus and trachea develop from a common Unknown. There is no demonstrable genetic diverticulum of the primitive pharyngeal cavity. The predisposition, and the disease occurs sporadically. diverticulum is subsequently partitioned by the tra- ESOPHAGEAL ATRESIA WITH AND WITHOUT TRACHEOESOPHAGEAL FISTULA 235 ©1987-2002 Romero-Pilu-Jeanty-Ghidini-Hobbins Figure 7-1. Transverse scan of the fetal abdomen in a fetus with esophageal atresia. A normal stomach is not visualized. The arrows point to the collapsed walls of the stomach. Sp, Spine. Figure 7-2. Coronal section of the neck in a fetus with esophageal atresia. Arrows point to the esophagus, which ends blindly (*). cheoesophageal septum, forming the laryngotracheal tube and the esophagus. Development of the upper consequence of the esophageal obstruction. The prenatal respiratory and gastrointestinal tracts takes place diagnosis of isolated esophageal atresia has been reported 13 3,8,14 between the 21st day and the 5th week of gestation in a few cases. Failure to visualize the stomach in Given this common embryologic origin, it is not serial ultrasound examinations allowed the diagnosis surprising that anomalies of the trachea and (Figs. 7-1, 7-2). It should be stressed that this diagnosis esophagus are often associated. is only possible in 10 percent of patients. In the remaining patients, the gastric secretion or the occurrence of a tracheoesophageal fistula will allow visualization of Pathology 2 There are different types of tracheoesophageal some gastric distention. Any time the stomach is not abnormalities. The five major varieties include (1) visualized, the fetal face should be examined to exclude isolated esophageal atresia, (2) esophageal atresia otocephaly (see p. 110). with a fistula connecting the proximal portion of the esophagus with the trachea, (3) esophageal atresia with a fistula connecting the distal portion of the Prognosis esophagus with the trachea, (4) esophageal atresia The prognosis of esophageal atresia with or without with a double fistula connecting both segments of the tracheoesophageal fistula depends on three factors: interrupted esophagus with the trachea, and (5) associated congenital anomalies, respiratory tracheoesophageal fistula without esophageal atresia. complications, and gestational age and weight at The most common variety is the third one, which delivery. Infants born at term without anomalies or accounts
Recommended publications
  • Meconium Peritonitis
    ISSN: 2377-9004 Agrawal et al. Obstet Gynecol Cases Rev 2020, 7:180 DOI: 10.23937/2377-9004/1410180 Volume 6 | Issue 5 Obstetrics and Open Access Gynaecology Cases - Reviews CASE REPORT Meconium Peritonitis: In Utero Diagnosis of a Rare Clinical Entity and Postnatal Outcome Sarita Agrawal, MD, FICOG, FIAMS, FCGP1, Arpana Verma, MS2*, Sarita Rajbhar, MS3, Pushpawati Thakur, MD4, Loukya Kodumuri, MBBS5 and Swati Kumari, MS, FNB6 1Professor and Head of Department, Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India 2Senior Resident, Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India 3Assistant Professor, Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India 4 Check for Associate Professor, Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, updates Raipur, Chhattisgarh, India 5Post Graduate Student, Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India 6Sonologist and Fetal Medicine Expert, Shivam Fetomed and Spine Centre, Raipur, Chhattisgarh, India *Corresponding author: Arpana Verma, MS, Senior Resident, Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, V.V-18, Parthivi Province, Near Salasar Greens, Sarona, Raipur, Chhattisgarh - 492099, India, Tel: 9741412716; 6260334337 Abstract done for immune and non-immune hydrops and was found to be negative. One week later, a repeat ultrasound was done Objective: To present an unusual case of meconium peri- which showed moderate fetal ascites with few areas of calci- tonitis diagnosed during prenatal period and its postnatal fication in the bowel loops and prominent inferior vena cava, outcome.
    [Show full text]
  • The Effects of Maternal Chorioamnionitis on the Neonate
    Neonatal Nursing Education Brief: The Effects of Maternal Chorioamnionitis on the Neonate https://www.seattlechildrens.org/healthcare- professionals/education/continuing-medical-nursing-education/neonatal- nursing-education-briefs/ Maternal chorioamnionitis is a common condition that can have negative effects on the neonate. The use of broad spectrum antibiotics in labor can reduce the risks, but infants exposed to chorioamnionitis continue to require treatment. The neonatal sepsis risk calculator can guide treatment. NICU, chorioamnionitis, early onset neonatal sepsis, sepsis risk calculator The Effects of Maternal Chorioamnionitis on the Neonate Purpose and Goal: CNEP # 2090 • Understand the effects of chorioamnionitis on the neonate. • Learn about a new approach for treating infants at risk. None of the planners, faculty or content specialists has any conflict of interest or will be presenting any off-label product use. This presentation has no commercial support or sponsorship, nor is it co-sponsored. Requirements for successful completion: • Successfully complete the post-test • Complete the evaluation form Date • December 2018 – December 2020 Learning Objectives • Describe the pathogenesis of maternal chorioamnionitis. • Describe the outcomes for neonates exposed to chorioamnionitis. • Identify 2 approaches for the treatment of early onset sepsis. Introduction • Chorioamnionitis is a common complication • It affects up to 10% of all pregnancies • It is an infection of the amniotic fluid and placenta • It is characterized by inflammation
    [Show full text]
  • CASE REPORT CASE CASE R Imaging Findings of Meconium
    CASE REPORT CASE REPORT Imaging findings of meconium peritonitis Logeshini Naidoo, MB ChB, FCRad (Diag) SA Helen Joseph and Coronation Hospitals, Johannesburg Introduction Meconium peritonitis results from intrauterine gastrointestinal perfora- tion, and can occur as early as the second trimester.1 Meconium extrudes into the peritoneal cavity, inciting an intense fibroplastic reaction that results in intra-abdominal calcifications.2 It is a rare condition occurring in 1 in 35 000 pregnant women.3 The clinical and radiological manifestations depend on whether the bowel perforation seals off in utero in the neonatal period or remains patent.3 Accordingly, the radiological spectra range from the incidental demonstration of diffuse intra-abdominal calcifications to meconium ascites (free meconium in the peritoneal cavity), meconium pseudocysts (walled-off meconium concentrations), and meconium hydrocoeles. Meconium has also been reported in the thoracic cavity (via diaphrag- matic hernias) and in the pelvic soft tissues.4 Antenatal ultrasound allows early detection of the condition, demonstrating free fluid, hydrocoeles and echogenic foci representing intraperitoneal calcifications.5 In the newborn, plain abdominal radiographs demonstrating calcifications and/or ascites are sufficient for diagnosis.1 Postnatal ultrasound is reserved for atypical presentations and can exclude intra-abdominal masses.1 Although computed tomography (CT) was used as an ancillary tool in the case report described below, it is unnecessary, thus negating the need for radiation exposure and expenditure of time. Fig. 1. Supine abdominal X-ray revealing a massively distended abdomen with poor lung capacities. The bulging flanks and central The imaging findings in a newborn with an ongoing bowel perfora- floating bowel loops indicate ascites.
    [Show full text]
  • Fetal Meconium Peritonitis Associated with Prenatal Methamphetamine Exposure
    W.J. Yang, et al ■ SHORT COMMUNICATION ■ FETAL MECONIUM PERITONITIS ASSOCIATED WITH PRENATAL METHAMPHETAMINE EXPOSURE Wen-Jui Yang1, Chie-Pein Chen1,2*, Chen-Yu Chen1, Kuo-Gon Wang1, Tsung-Hsien Su1,2 1Department of Obstetrics and Gynecology, Mackay Memorial Hospital, and 2Mackay Medicine, Nursing and Management College, Taipei, Taiwan. SUMMARY Objective: In roughly 50% of all patients with meconium peritonitis, there is no evidence of primary obstruction of the bowel. We report a case of maternal methamphetamine and heroin abuse complicated by fetal meconium pseudocyst without a definite intestinal obstructive lesion. We discuss the correlation between the presence of meconium peritonitis and prenatal exposure to methamphetamine. Case Report: A 19-year-old, gravida 2, para 0, abortus 1, woman had abused illegal drugs, including methamphetamine and intravenous heroin. Suffering from withdrawal symptoms, she was taken to a shelter where she was diagnosed with a pregnancy of 26 weeks’ gestation. The patient underwent cesarean section at 34 weeks due to preterm labor and fetal malpresentation. A boy weighing 2,474 g was born, but had to be intubated and admitted to the intensive care unit because of a distended abdomen and respiratory distress. A laparotomy performed on the second day of life revealed a large calcified pseudocyst associated with two perforations of the distal jejunum. A segmental resection of the jejunum with primary anastomosis was performed. The infant recovered well after the operation and was discharged 65 days after birth. Conclusion: Since methamphetamine is a powerful _-adrenergic stimulant and induces the release of catecholamines from adrenergic synapses, it can cause powerful vessel constriction.
    [Show full text]
  • Meconium Aspiration Syndrome – the Core Concept of Pathophysiology During Resuscitation
    Invited Review Neonatal Med 2017 May;24(2):53-61 https://doi.org/10.5385/nm.2017.24.2.53 pISSN 2287-9412 . eISSN 2287-9803 Meconium Aspiration Syndrome – The Core Concept of Pathophysiology during Resuscitation Tsu F. Yeh, M.D. *† Department of Pediatrics*, Maternal Child Health Research Center, Taipei Medical University, Taipei, Taiwan Children’s Hospital†, China Medical University, Taichung, Taiwan ABSTRACT Received: 17 August 2016 Revised: 10 May 2017 Aspiration of meconium produces a syndrome (Meconium Aspiration Syndrome Accepted: 10 May 2017 MAS) characterized by hypoxia, hypercapnia, and acidosis. Perinatal hypoxia, acute Correspondence to: Tsu F. Yeh airway obstruction, pulmonary inflammation, pulmonary vasoconstriction, pulm­ Maternal Child Health Research onary hypertension, and surfactant inactivation all play a role in the pathogenesis of Center, College of Medicine, Taipei MAS. Most aspiration of meconium probably occurs before birth. Following aspira­ Medical University, Taipei 110, tion, meconium may migrate to the peripheral airway, usually take about 2 hours as Taiwan demonstrated in animal experiment, leading to airway obstruction and subsequent Tel: +886­2­2736­1661 ext.7213 lung inflammation and pulmonary hypertension. The presence of meconium in the E­mail: [email protected] endotracheal aspirate automatically establishes the diagnosis of MAS. Clinical diag­ nosis can be made in any infant born with meconium staining of amniotic fluid who develops respiratory distress at or shortly after birth and has positive radiographic findings. Prevention of intrauterine hypoxia, early cleaning (suctioning) of the airway, and prevention and treatment of pulmonary hypertension are essential in the mana­ gement of MAS. Recent studies suggest that avoidance of post­term delivery may reduce the risk of intrauterine hypoxia and the incidence of MAS.
    [Show full text]
  • Long-Term Outcome After Neonatal Meconium Obstruction
    Long-term Outcome After Neonatal Meconium Obstruction Julie R. Fuchs, MD, and Jacob C. Langer, MD ABSTRACT. Objective. It is unclear whether children meconium ileus and those undergoing resection or enter- with cystic fibrosis (CF) who present with neonatal ostomy. Patients with meconium obstruction who do not meconium ileus have a different long-term outcome from have CF have an excellent long-term prognosis. This those presenting later in childhood with pulmonary com- information will be useful in counseling the families of plications or failure to thrive. We examined a cohort of infants presenting with neonatal meconium obstruction. patients with meconium ileus, and compared their long- Pediatrics 1998;101(4). URL: http://www.pediatrics.org/ term outcome with children who had CF without meco- cgi/content/full/101/4/e7; cystic fibrosis, meconium ileus, nium ileus and neonates who had meconium obstruction meconium plug syndrome. without CF (meconium plug syndrome). Study Design. Comparative study using retrospective and follow-up interview data. ABBREVIATION. CF, cystic fibrosis. Patients. Group 1 consisted of 35 surviving CF pa- tients who presented with meconium ileus between 1966 econium obstruction in the neonate is a and 1992. Two control groups were also studied: 35 age- spectrum of disease that includes meco- and sex-matched CF patients without meconium ileus 1 (group 2), and 12 infants presenting with meconium plug Mnium ileus and meconium plug syndrome. syndrome during the same time period (group 3). Meconium ileus is characterized by extremely viscid, Outcome Measures. Pulmonary, gastrointestinal, nu- protein-rich inspissated meconium causing terminal tritional, and functional status were reviewed, and sur- ileal obstruction, and accounts for approximately gical complications were recorded.
    [Show full text]
  • PROBLEMS of the NEONATAL PERIOD
    PROBLEMS of the NEONATAL PERIOD Susan Fisher-Owens, MD, MPH, FAAP Associate Clinical Professor of Clinical Pediatrics Associate Clinical Professor of Preventive and Restorative Dental Sciences University of California, San Francisco Zuckerberg San Francisco General Hospital UCSF Family Medicine Board Review: Improving Clinical Care Across the Lifespan San Francisco March 6, 2017 Disclosures “I have nothing to disclose” (financially) …except appreciation to Colin Partridge, MD, MPH for help with slides 2 Common Neonatal Problems Hypoglycemia Respiratory conditions Infections Polycythemia Bilirubin metabolism/neonatal jaundice Bowel obstruction Birth injuries Rashes Murmurs Feeding difficulties 3 Abbreviations CCAM—congenital cystic adenomatoid malformation CF—cystic fibrosis CMV—cytomegalovirus DFA-- Direct Fluorescent Antibody DOL—days of life ECMO—extracorporeal membrane oxygenation (“bypass”) HFOV– high-flow oxygen ventilation iNO—inhaled nitrous oxide PDA—patent ductus arteriosus4 Hypoglycemia Definition Based on lab Can check a finger stick, but confirm with central level 5 Hypoglycemia Causes Inadequate glycogenolysis cold stress, asphyxia Inadequate glycogen stores prematurity, postdates, intrauterine growth restriction (IUGR), small for gestational age (SGA) Increased glucose consumption asphyxia, sepsis Hyperinsulinism Infant of Diabetic Mother (IDM) 6 Hypoglycemia Treatment Early feeding when possible (breastfeeding, formula, oral glucose) Depending on severity of hypoglycemia and clinical findings,
    [Show full text]
  • Subset of Alphabetical Index to Diseases and Nature of Injury for Use with Perinatal Conditions (P00-P96)
    Subset of alphabetical index to diseases and nature of injury for use with perinatal conditions (P00-P96) SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising in the perinatal period Conditions arising—continued - abnormal, abnormality—continued Note - Conditions arising in the perinatal - - fetus, fetal period, even though death or morbidity - - - causing disproportion occurs later, should, as far as possible, be - - - - affecting fetus or newborn P03.1 coded to chapter XVI, which takes - - forces of labor precedence over chapters containing codes - - - affecting fetus or newborn P03.6 for diseases by their anatomical site. - - labor NEC - - - affecting fetus or newborn P03.6 These exclude: - - membranes (fetal) Congenital malformations, deformations - - - affecting fetus or newborn P02.9 and chromosomal abnormalities - - - specified type NEC, affecting fetus or (Q00-Q99) newborn P02.8 Endocrine, nutritional and metabolic - - organs or tissues of maternal pelvis diseases (E00-E99) - - - in pregnancy or childbirth Injury, poisoning and certain other - - - - affecting fetus or newborn P03.8 consequences of external causes (S00-T99) - - - - causing obstructed labor Neoplasms (C00-D48) - - - - - affecting fetus or newborn P03.1 Tetanus neonatorum (A33) - - parturition - - - affecting fetus or newborn P03.9 - ablatio, ablation - - presentation (fetus) (see also Presentation, - - placentae (see also Abruptio placentae) fetal, abnormal) - - - affecting fetus or newborn
    [Show full text]
  • Cystic Fibrosis Discussants IVAN HARWOOD, MD; FERNANDO ROSAS, MD; DAVID K
    62 im A Cystic Fibrosis Discussants IVAN HARWOOD, MD; FERNANDO ROSAS, MD; DAVID K. EDWARDS, MD; JOHN KELSO, MD; and WILLIAM L. NYHAN, MD, PhD I VAN HARWOOD, MD: * A starting point for the discussion of partial carbon dioxide pressure of 52 torr, and it was decided important topics in cystic fibrosis and its management in to insert an endotracheal tube for ventilation and to begin infants is provided by an informative case of a patient, which treatment with ribavirin. Klebsiella and Escherichia coli will be presented by Dr Rosas. From there we will discuss the were found on tracheal culture. rapidly developing advances in diagnosis and therapy. His course was stormy because of recurrent episodes of increased airway resistance and increased difficulty in ven- Case Presentation tilation, but his condition slowly improved, and the endo- Case 1 tracheal tube was removed about a week later. His weight was FERNANDO RoSAS, MD:t The mother was seen because of 2.3 kg. At 2 months of age, sufficient sweat could be collected polyhydramnios and other factors that led to the decision to for the first time for a sweat test, which was positive; the deliver the infant at 33 weeks by cesarean section. She was 30 chloride concentration was 95.7 mEq per liter and the spec- years old and the father 39. The first offive siblings died at the imen weighed 130 mg. age of 15 months of what was called intestinal infection, the Six weeks after admission, he was discharged weighing fourth was a fetal death at 20 weeks of gestation, and the fifth 2.7 kg and tolerating Pregestimil (Mead Johnson) formula died at 3 months of age of pneumonia.
    [Show full text]
  • Meconium Peritonitis Due to Fetal Appendiceal
    Wang et al. BMC Pediatrics (2018) 18:162 https://doi.org/10.1186/s12887-018-1133-8 CASEREPORT Open Access Meconium peritonitis due to fetal appendiceal perforation: two case reports and a brief review of the literature Yi Wang1, Yeming Wu1, Wenbin Guan2, Wenbo Yan1, Yuhua Li3, Jin Fang3 and Jun Wang1* Abstract Background: Meconium peritonitis is an infrequent congenital disease usually caused by perforation of the fetal digestive tract. Meconium peritonitis resulting from intrauterine appendiceal perforation has been rarely reported and is often overlooked during pregnancy. We herein report two cases of fetal appendiceal perforation. Case presentation: Two neonates were found to have intestinal distension and gradually increasing ascites antenatally. After birth, diagnostic abdominal punctures revealed meconium peritonitis. Urgent surgery showed both neonates had developed gangrenous appendicitis in utero. Pathological examination supported the diagnosis of fetal appendiceal perforation in both neonates, and one also had deformity of cecal duplication. In the present report, we also review the presentation, diagnosis, pathology, management, and recent literature of fetal appendiceal perforation. Conclusion: Meconium peritonitis due to fetal appendiceal perforation is extremely rare, and preoperative diagnosis is almost impossible. However, clinicians should be aware of abnormal gastrointestinal manifestations in the fetus during the antenatal examination. For neonates with severe meconium peritonitis, an early operation with careful intraoperative exploration is necessary. Keywords: Meconium peritonitis, Appendicitis, Intestinal duplication, Fetus, Surgery Background experience with special reference to the clinical presen- Meconium peritonitis (MP) is a sterile chemical periton- tation, evaluation (particularly with respect to the pre- itis that is caused by intrauterine bowel perforation and operative diagnosis and pathological diagnosis), and has low morbidity (1/30,000).
    [Show full text]
  • Meconium Aspiration Syndrome: a Narrative Review
    children Review Meconium Aspiration Syndrome: A Narrative Review Chiara Monfredini 1, Francesco Cavallin 2 , Paolo Ernesto Villani 1, Giuseppe Paterlini 1 , Benedetta Allais 1 and Daniele Trevisanuto 3,* 1 Neonatal Intensive Care Unit, Department of Mother and Child Health, Fondazione Poliambulanza, 25124 Brescia, Italy; [email protected] (C.M.); [email protected] (P.E.V.); [email protected] (G.P.); [email protected] (B.A.) 2 Independent Statistician, 36020 Solagna, Italy; [email protected] 3 Department of Woman and Child Health, University of Padova, 35128 Padova, Italy * Correspondence: [email protected] Abstract: Meconium aspiration syndrome is a clinical condition characterized by respiratory failure occurring in neonates born through meconium-stained amniotic fluid. Worldwide, the incidence has declined in developed countries thanks to improved obstetric practices and perinatal care while challenges persist in developing countries. Despite the improved survival rate over the last decades, long-term morbidity among survivors remains a major concern. Since the 1960s, relevant changes have occurred in the perinatal and postnatal management of such patients but the most appropriate approach is still a matter of debate. This review offers an updated overview of the epidemiology, etiopathogenesis, diagnosis, management and prognosis of infants with meconium aspiration syndrome. Keywords: infant newborn; meconium aspiration syndrome; meconium-stained amniotic fluid Citation: Monfredini, C.; Cavallin, F.; Villani, P.E.; Paterlini, G.; Allais, B.; Trevisanuto, D. Meconium Aspiration 1. Definition of Meconium Aspiration Syndrome Syndrome: A Narrative Review. Meconium aspiration syndrome (MAS) is a clinical condition characterized by respira- Children 2021, 8, 230. https:// tory failure occurring in neonates born through meconium-stained amniotic fluid whose doi.org/10.3390/children8030230 symptoms cannot be otherwise explained and with typical radiological characteristics [1].
    [Show full text]
  • Distocia Or Birthing Problems
    Birthing problems or dystocia Nothing is more stressful than assisting your animal in it’s birthing process at home. Fortunately, this is usually a beautiful exprerience. However if complications arise, which happens in about 5-6% of deliveries, it can become a nightmare. A birthing problem must always be considered an emergency! Usually the entire litter dies within 24h after the first signs of dystocia. Moreover, if nothing is done the female can start showing signs of generalized infection after about 48 to 72hrs. This requires critical care and places her at risk for death. So when should you consult your veterinarian? Is your pet really showing signs of a problematic delivery? Should we induce delivery, or should we let nature take it's course? We will try to answer these questions in the next few paragraphs. Stages of a normal delivery: 1. The pre-delivery stage: There is a decrease in normal body temperature of about 1 to 1.5 degrees (that is to say from 38.5 to 37.5- 37°C) 12 to 24h before delivery due to a decrease in blood progesterone levels. The female behaves normally, except for some that will have a decreased or absent appetite during this period. For a few females this stage, that usually lasts about 12 to 24h, can last up to 48hrs. 2. The delivery Stage 1. The female cannot find a comfortable position, she pants a lot and walks constantly, but does not have any contractions. This is the stage when you can sometimes note the ‘’water breaking’’ or the presence of black, green, brown or red discharge coming from the vulva.
    [Show full text]