Major Lineages and Life Cycles of Land Plants Green Plants: Viridiplantae

Total Page:16

File Type:pdf, Size:1020Kb

Major Lineages and Life Cycles of Land Plants Green Plants: Viridiplantae Major lineages and life cycles of land plants Green plants: viridiplantae Green plants Embryophytes (land plants) Bryophytes Tracheophytes (vascular plants) Seed plants Green algae Gymnosperms Angiosperms Mosses Hornworts Ferns Ferns Liverworts Lycophytes Green plants: viridiplantae Green plants Green algae life.umd.edu Embryophytes (land plants) Nitella (Characeae) embryo sporopollenin cuticle algalweb.net Coleochaete Land plants: embryophyta Embryophytes (land plants) Bryophytes Tracheophytes Anthoceros (vascular plants) tracheids Ceratadon stomata Marchantia Vascular plants: tracheophyta Tracheophytes (vascular plants) Seed plants (Gymnosperms +Angiosperms) Polypodium seeds pollen true leaves (megaphylls) Lycopodium Seed plants: spermatophyta Seed plants Pinus Gymnosperms Conifers Gnetophytes Ginkgo Cycads Angiosperms Welwitschia Ginkgo Zamia Gymnosperms brevifolia Taxus plicata Thuja monticola Pinus Chaw et al., 2000 Angiosperms Seed plants Gymnosperms Angiosperms triploid endosperm reduced female gametophyte bitegmic ovules carpel sieve tubes ovary ovule placenta Monocots vs. dicots Monocot& Dicot& One&cotyledon& Two&cotyledons& Pollen&with&one&aperture&(monosulcate)& Pollen&with&one&or&three&apertures&(tricolpate)& Floral&parts&in&mul5ples&of&three& Floral&parts&in&mul5ples&of&four&or&five& Leaf&veina5on&parallel& Leaf&veina5on&re5culate& Vascular&bundles&sca=ered&throughout&stem& Vascular&bundles&arranged&in&a&ring& Adven55ous&roots&only& Primary&and&adven55ous&roots& Monocots vs. dicots Monocot& Dicot& One&cotyledon& Two&cotyledons& Pollen&with&one&aperture&(monosulcate)& Pollen&with&one/three&apertures&(tricolpate)& Floral&parts&in&mul5ples&of&three& Floral&parts&in&mul5ples&of&four&or&five& Leaf&veina5on&parallel& Leaf&veina5on&re5culate& Vascular&bundles&sca=ered&throughout&stem& Vascular&bundles&arranged&in&a&ring& Adven55ous&roots&only& Primary&and&adven55ous&roots& Monocots vs. dicots Monocot& Dicot& One&cotyledon& Two&cotyledons& Pollen&with&one&aperture&(monosulcate)& Pollen&with&one&or&three&apertures&(tricolpate)& Floral&parts&in&mul<ples&of&three& Floral&parts&in&mul<ples&of&four&or&five& Leaf&veina5on&parallel& Leaf&veina5on&re5culate& Vascular&bundles&sca=ered&throughout&stem& Vascular&bundles&arranged&in&a&ring& Adven55ous&roots&only& Primary&and&adven55ous&roots& Monocots vs. dicots Monocot& Dicot& One&cotyledon& Two&cotyledons& Pollen&with&one&aperture&(monosulcate)& Pollen&with&one&or&three&apertures&(tricolpate)& Floral&parts&in&mul5ples&of&three& Floral&parts&in&mul5ples&of&four&or&five& Leaf&veina<on&parallel& Leaf&veina<on&re<culate& Vascular&bundles&sca=ered&throughout&stem& Vascular&bundles&arranged&in&a&ring& Adven55ous&roots&only& Primary&and&adven55ous&roots& Monocots vs. dicots Monocot& Dicot& One&cotyledon& Two&cotyledons& Pollen&with&one&aperture&(monosulcate)& Pollen&with&one&or&three&apertures&(tricolpate)& Floral&parts&in&mul5ples&of&three& Floral&parts&in&mul5ples&of&four&or&five& Leaf&veina5on&parallel& Leaf&veina5on&re5culate& Vascular&bundles&scaCered&throughout&stem& Vascular&bundles&arranged&in&a&ring& Adven55ous&roots&only& Primary&and&adven55ous&roots& Monocots vs. dicots Monocot& Dicot& One&cotyledon& Two&cotyledons& Pollen&with&one&aperture&(monosulcate)& Pollen&with&one&or&three&apertures&(tricolpate)& Floral&parts&in&mul5ples&of&three& Floral&parts&in&mul5ples&of&four&or&five& Leaf&veina5on&parallel& Leaf&veina5on&re5culate& Vascular&bundles&sca=ered&throughout&stem& Vascular&bundles&arranged&in&a&ring& Adven<<ous&roots&only& Primary&and&adven<<ous&roots& Angiosperm phylogeny Dicots with monosulcate pollen = paraphyletic Monocots = monophyletic Dicots with tricolpate pollen = monophyletic Eudicots (tricolpates) Angiosperm phylogeny Soltis et al., 2011 Rosids& Saxifragales& Asterids& Caryophyllales& Ranunculaceae& Monocots& Magnoliids& ANITA&grade& Life cycles: animals vs. plants Life cycles: plants Alternation of generations cycle between haploid (1n) and diploid (2n) phase. =&fer5liza5on& http://en.wikipedia.org/wiki/Alternation_of_generations Life cycles: plants devbio.com Life cycles: plants devbio.com Life cycles: plants Pollina5on& devbio.com Life cycles: pollination and fertilization Seed plants Gymnosperms Angiosperms triploid endosperm reduced female gametophyte bitegmic ovules carpel sieve tubes ovary ovule placenta Life cycles: pollination and fertilization pollen grain pollination = male gametophyte pollen tube ovule ovary embryo sac = female gametophyte fertilization micropyle Life cycles: review Pollination – transfer of pollen from anther to stigma (or male cone to female cone). Occurs only in seed plants. Fertilization – fusion of egg and sperm to form zygote. Occurs in all sexually reproducing organisms. Zygote in embryophytes becomes embryo. Sporophyte – the diploid (2n) generation in plants. Embryo becomes sporophyte. Produces spores. Spore – the haploid product of meiosis. Gametophyte – The haploid (1n) generation in plants. Spore becomes gametophyte. Produces gametes. Gamete – the haploid cells that participate in fertilization: egg and sperm. Gametes in embryophytes are produced by mitosis. .
Recommended publications
  • HUNTIA a Journal of Botanical History
    HUNTIA A Journal of Botanical History VOLUME 15 NUMBER 2 2015 Hunt Institute for Botanical Documentation Carnegie Mellon University Pittsburgh The Hunt Institute for Botanical Documentation, a research division of Carnegie Mellon University, specializes in the history of botany and all aspects of plant science and serves the international scientific community through research and documentation. To this end, the Institute acquires and maintains authoritative collections of books, plant images, manuscripts, portraits and data files, and provides publications and other modes of information service. The Institute meets the reference needs of botanists, biologists, historians, conservationists, librarians, bibliographers and the public at large, especially those concerned with any aspect of the North American flora. Huntia publishes articles on all aspects of the history of botany, including exploration, art, literature, biography, iconography and bibliography. The journal is published irregularly in one or more numbers per volume of approximately 200 pages by the Hunt Institute for Botanical Documentation. External contributions to Huntia are welcomed. Page charges have been eliminated. All manuscripts are subject to external peer review. Before submitting manuscripts for consideration, please review the “Guidelines for Contributors” on our Web site. Direct editorial correspondence to the Editor. Send books for announcement or review to the Book Reviews and Announcements Editor. Subscription rates per volume for 2015 (includes shipping): U.S. $65.00; international $75.00. Send orders for subscriptions and back issues to the Institute. All issues are available as PDFs on our Web site, with the current issue added when that volume is completed. Hunt Institute Associates may elect to receive Huntia as a benefit of membership; contact the Institute for more information.
    [Show full text]
  • Antarctic Bryophyte Research—Current State and Future Directions
    Bry. Div. Evo. 043 (1): 221–233 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.16 Antarctic bryophyte research—current state and future directions PAULO E.A.S. CÂMARA1, MicHELine CARVALHO-SILVA1 & MicHAEL STecH2,3 1Departamento de Botânica, Universidade de Brasília, Brazil UnB; �[email protected]; http://orcid.org/0000-0002-3944-996X �[email protected]; https://orcid.org/0000-0002-2389-3804 2Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands; 3Leiden University, Leiden, Netherlands �[email protected]; https://orcid.org/0000-0001-9804-0120 Abstract Botany is one of the oldest sciences done south of parallel 60 °S, although few professional botanists have dedicated themselves to investigating the Antarctic bryoflora. After the publications of liverwort and moss floras in 2000 and 2008, respectively, new species were described. Currently, the Antarctic bryoflora comprises 28 liverwort and 116 moss species. Furthermore, Antarctic bryology has entered a new phase characterized by the use of molecular tools, in particular DNA sequencing. Although the molecular studies of Antarctic bryophytes have focused exclusively on mosses, molecular data (fingerprinting data and/or DNA sequences) have already been published for 36 % of the Antarctic moss species. In this paper we review the current state of Antarctic bryological research, focusing on molecular studies and conservation, and discuss future questions of Antarctic bryology in the light of global challenges. Keywords: Antarctic flora, conservation, future challenges, molecular phylogenetics, phylogeography Introduction The Antarctic is the most pristine, but also most extreme region on Earth in terms of environmental conditions.
    [Show full text]
  • Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas
    foods Article Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas Mounia Homrani 1 , Olga Escuredo 2 , María Shantal Rodríguez-Flores 2 , Dalache Fatiha 1, Bouzouina Mohammed 3, Abdelkader Homrani 1 and M. Carmen Seijo 2,* 1 Laboratory of Sciences and Technics of Animal Production (LSTPA), Abdelhamid Ibn Badis University (UMAB), 27000 Mostaganem, Algeria; [email protected] (M.H.); [email protected] (D.F.); [email protected] (A.H.) 2 Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain; [email protected] (O.E.); [email protected] (M.S.R.-F.) 3 Laboratory of Vegatal Protection, Abdelhamid Ibn Badis University (UMAB), 27000 Mostaganem, Algeria; [email protected] * Correspondence: [email protected] Received: 27 May 2020; Accepted: 9 July 2020; Published: 16 July 2020 Abstract: The palynological and physicochemical analysis of 62 honey samples produced in different biogeographical areas of Algeria was conducted. Results showed high variety in the botanical origin of samples and their physicochemical profile. Twenty-six samples were polyfloral honey, 30 were unifloral honey from different botanical sources such as Eucalyptus, Citrus, Apiaceae, Punica, Erica, Rosmarinus, Eriobotrya, or Hedysarum, and 6 were characterized as honeydew honey. Pollen analysis allowed the identification of 104 pollen types belonging to 51 botanical families, whereas the physicochemical profile showed important variations between samples. Multivariate techniques were used to compare the characteristics of samples from different biogeographical areas, showing significant differences between humid-area samples, located in the northeast of the country, and samples taken in semiarid, subhumid, and arid zones.
    [Show full text]
  • Seed Germination and Genetic Structure of Two Salvia Species In
    Seed germination and genetic structure of two Salvia species in response to environmental variables among phytogeographic regions in Jordan (Part I) and Phylogeny of the pan-tropical family Marantaceae (Part II). Dissertation Zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat) Vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg Von Herrn Mohammad Mufleh Al-Gharaibeh Geb. am: 18.08.1979 in: Irbid-Jordan Gutachter/in 1. Prof. Dr. Isabell Hensen 2. Prof. Dr. Martin Roeser 3. Prof. Dr. Regina Classen-Bockhof Halle (Saale), den 10.01.2017 Copyright notice Chapters 2 to 4 have been either published in or submitted to international journals or are in preparation for publication. Copyrights are with the authors. Just the publishers and authors have the right for publishing and using the presented material. Therefore, reprint of the presented material requires the publishers’ and authors’ permissions. “Four years ago I started this project as a PhD project, but it turned out to be a long battle to achieve victory and dreams. This dissertation is the culmination of this long process, where the definition of “Weekend” has been deleted from my dictionary. It cannot express the long days spent in analyzing sequences and data, battling shoulder to shoulder with my ex- computer (RIP), R-studio, BioEdite and Microsoft Words, the joy for the synthesis, the hope for good results and the sadness and tiredness with each attempt to add more taxa and analyses.” “At the end, no phrase can describe my happiness when I saw the whole dissertation is printed out.” CONTENTS | 4 Table of Contents Summary ..........................................................................................................................................
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Genetic and Biochemical Mechanisms of Pollen Wall Development
    Review Genetic and Biochemical Mechanisms of Pollen Wall Development 1 1 1 1,2 Jianxin Shi, Meihua Cui, Li Yang, Yu-Jin Kim, and 1,3, Dabing Zhang * The pollen wall is a specialized extracellular cell wall matrix that surrounds male Trends gametophytes and plays an essential role in plant reproduction. Uncovering the Pollen wall development exhibits con- fi mechanisms that control the synthesis and polymerization of the precursors of served and diversi ed features. pollen wall components has been a major research focus in plant biology. We Genes associated with pollen wall devel- review current knowledge on the genetic and biochemical mechanisms under- opment are coordinately regulated. lying pollen wall development in eudicot model Arabidopsis thaliana and mono- The synthesis of exine and anther cutin cot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, may share common pathways in rice. transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regula- tion are addressed. Current challenges and future perspectives are also highlighted. Pollen Wall Development The pollen wall is the complex multiple-layer outer surface of pollen. It is essential for plant reproduction because of its role in rendering male gametophytes resistant to various biotic and abiotic stresses, as well as its function in male–female interaction, fertilization, and seed production [1]. The underlying genetic, molecular, and biochemical mechanisms of pollen wall development have long defied unraveling, but this is changing fast. Several excellent reviews have summarized the genes and enzymes associated with the biosynthesis and transport of the lipidic and phenolic precursors necessary for the formation of the outer pollen wall named exine 1 Joint International Research – [1 4] (see Glossary).
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • The Evolutionary History of Flowering Plants
    Journal & Proceedings of the Royal Society of New South Wales, vol. 149, parts 1 & 2, 2016, pp. 65–82. ISSN 0035-9173/16/010065–18 The evolutionary history of flowering plants Charles S.P. Foster1 1 School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia This paper was an RSNSW Scholarship Winner in 2015 Email: [email protected] Abstract In terms of species richness and important ecological roles, there are few biological groups that rival the success of flowering plants (Angiospermae). Angiosperm evolution has long been a topic of interest, with many attempts to clarify their phylogenetic relationships and timescale of evolution. However, despite this attention there remain many unsolved questions surrounding how and when flowers first appeared, and much of the angiosperm diversity remains to be quantified. Here, I review the evolutionary history of angiosperms, and how our understanding of this has changed over time. I begin by summarising the incredible morphological and genetic diversity of flowering plants, and the ways in which this can be studied using phylogenetic inference. I continue by discussing both the relationships between angiosperms and the other major lineages of seed plants, and the relationships between the main groups within angiosperms. In both cases, I outline how our knowledge has changed over time based on factors such as the different conclusions drawn from morphological and genetic data. I then discuss attempts to estimate the timescale of angiosperm evolution and the difficulties of doing so, including the apparent conflict between ages derived from fossil and molecular evidence. Finally, I propose future directions for angiosperm research to help clarify the evolutionary history of one of the most important groups of organisms on the planet.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Characterization of Flowering Time and Pollen Production in Jojoba (Simmondsia Chinensis) Towards a Strategy for the Selection of Elite Male Genotypes
    agronomy Brief Report Characterization of Flowering Time and Pollen Production in Jojoba (Simmondsia chinensis) towards a Strategy for the Selection of Elite Male Genotypes Noemi Tel Zur 1,* , Ronen Rothschild 2, Udi Zurgil 1 and Yiftach Vaknin 3 1 French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba 84990000, Israel; [email protected] 2 Jojoba Israel Ltd., Kibbutz Hatzerim 8542000, Israel; [email protected] 3 Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; [email protected] * Correspondence: [email protected] Received: 1 April 2020; Accepted: 13 April 2020; Published: 22 April 2020 Abstract: The seeds of the dioecious shrub jojoba (Simmondsia chinensis (Link) Schneider) yield a liquid wax that is in high demand for the cosmetics industry. While elite female cultivars of this species are currently clonally propagated, male plants are grown from seed, resulting in large variations in both the flowering period and the pollen viability, and hence large variation in yields. We characterized the existing male plant material in a local plantation as a platform for future selection of elite male cultivars that would produce sufficient amounts of viable pollen throughout the extended flowering period of the female cultivars. Using as a guide the number of viable pollen grains per 1-m branch, defined here as the calculated effective pollen productivity (EPP), we identified plants with an elevated EPP that flower concurrently with the female cultivars. Keywords: dioecious; flowering time; phenological diversity; pollen viability 1.
    [Show full text]
  • Chlorophyceae Incertae Sedis, Viridiplantae), Described from Europe
    Preslia 87: 403–416, 2015 403 A new species Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), described from Europe Nový druh Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), popsaný z Evropy KateřinaProcházková,YvonneNěmcová&JiříNeustupa Department of Botany, Faculty of Science, Charles University of Prague, Benátská 2, CZ-128 01 Prague, Czech Republic, e-mail: [email protected] Procházková K., Němcová Y. & Neustupa J. (2015): A new species Jenufa aeroterrestrica (Chlorophyceae incertae sedis, Viridiplantae), described from Europe. – Preslia 87: 403–416. The chlorophycean genus Jenufa includes chlorelloid green microalgae with an irregularly spher- ical cell outline and a parietal perforated chloroplast with numerous lobes. Two species of the genus are known from tropical microhabitats. However, sequences recently obtained from vari- ous temperate subaerial biofilms indicate that members of the Jenufa lineage do not only occur in the tropics. In this paper, we describe and characterize a new species of the genus Jenufa, J. aero- terrestrica, which was identified in five samples of corticolous microalgal biofilms collected in Europe. These strains shared the general morphological and ultrastructural features of the genus Jenufa, but differed in having a larger average cell size and higher numbers of autospores. Phylo- genetic analyses showed that the strains clustered in a sister position to two previously described tropical species, together with previously published European 18S rDNA sequences. This pattern was also supported by the ITS2 rDNA sequences of the genus Jenufa. Our data and previously published sequences indicate that the newly described species J. aeroterrestrica frequently occurs in temperate and sub-Mediterranean European subaerial biofilms, such as those occurring on tree bark or surfaces of stone buildings.
    [Show full text]