BREASTPLATE: Sternum RIBS

Total Page:16

File Type:pdf, Size:1020Kb

BREASTPLATE: Sternum RIBS Lab 4 FUNCTIONAL HUMAN ANATOMY LAB #4 THORACIC CAVITY THORACIC OSTEOLOGY: BREASTPLATE: Manubrium The joint between the Manubrium and the Sternum is called the manubrialsternal joint. This point is also a surface landmark called the sternal angle (which can be easily palpated). This is clinically Sternum important because it is located at the level of the second rib. Once the sternal angle has been palpated, the intercostal spaces may be Xiphoid process identified. RIBS: Head Neck Ribs 1-7 are true ribs (have direct connection to the sternum); 8-12 Tubercle are false ribs (no direct connection to the sternum); 11-12 are also floating ribs (have no anterior connection at all). Each rib articulates Angle with the thoracic vertebre in two places. The head of the rib articulates with the body of a vertebre and the tubercle of the rib articulates with Costal groove the tranverse process of a vertebre. There are costal facets present at these articulation points. Sternal end Costal chondrial joint THORACIC MUSCULATURE: Pectoralis major Medial attachment: consists of three heads (clavicular, sternal and Proximal end of clavical, body of sternum and the middle few ribs abdominal); only identify for now, we will discuss the function of this muscle in the Lateral attachment: upper extremity lab Lateral lip of interturbicular (bicipital) groove Function: Flexion of the arm at shoulder (clavicular head); horizontal adduction (sternal head); flexion of arm at shoulder from a hyperextended position (abdominal head); horizontal adduction and internal rotation (all three heads) Pectoralis minor Superior attachment: Acts primarily as a scapular stabilizer Corocoid process of the scapula Inferior attachment: 3rd - 5th ribs near their costal cartilages Function: depress scapula Serratus Anterior Medial attachment: consists of three heads (clavicular, sternal and Medial border of Scapula abdominal); only identify for now, we will discuss the function of this muscle in the Lateral attachment: upper extremity lab Ribs 1 – 8 (or 9) at the (approx.) anterior axillary line Function: protract scapula 1 Lab 4 External Intercostals Superior attachment: Outermost layer of muscle between the ribs; Inferior border of rib fibers run medially from superior to inferior; muscle does not cover the costal cartilages Inferior attachment: (exists as a transparent membrane only) Superior border of rib of adjacent rib Function: elevate ribs (inspiration) Internal intercostals Superior attachment: Middle layer of muscle between the ribs; fibers Inferior border of rib run laterally from superior to inferior; separated from the innermost intercostals by Inferior attachment: the intercostal vasculature Superior border of rib of adjacent rib Function: elevate ribs (inspiration) Innermost Intercostals Superior attachment: Innermost layer of muscle between the ribs; Inferior border of rib fibers run laterally from superior to inferior; separated from the internal intercostals by the Inferior attachment: intercostal vasculature Superior border of rib of adjacent rib Function: elevate ribs (inspiration) Subcostals Superior attachment: Located beneath the ribcage Inferior border of rib Inferior attachment: Superior border of rib (spans 2 ribs); best developed in ribs 6 – 12 Function: depress ribs (expiration) Tranversus thoracis Medial attachment: Located beneath the ribcage; has a “christmas Posterior lateral side of distal end of body of sternum tree” shape Lateral attachment: Internal inferior border of costal cartilages of 2nd - 6th ribs Function: depress ribs (expiration) 2 Lab 4 After dissecting the intercostal muscles, the parietal pleura is seen. Before puncturing the pleura, the lungs are still inflated due to the adhesion between the parietal and visceral pleural layers. This is important to note since this adhesion is the way the lungs are able to expand. The lungs themselves have no ability to expand on their own; the ribcage expands and the lungs (through this adhesion) are forced to expand as well. The parietal pleura lines the Mediastinum, ribs and diaphram and fills the gap in the superior thoracic aperture (circle formed by the Manubrium, first ribs and first thoracic vertebre). Once the parietal pleura is punctured, the lungs collapse. This same thing would happen if anything entered the space between the parietal and visceral pleural layers (e.g., air, blood, water, etc.). The lungs are (or should be) free everywhere except at the root. At the root, the parietal and visceral pleural layers meet and form the pulmonary ligament. This is the only communication between the pleural cavity and the mediastinum. Note that the phrenic nerve and accompanying vessels (pericardiocophrenic a. & v.) pass anterior to the root of the lungs. In between the two pleural cavities is the area called the Mediastinum which is bordered by: Anteriorly – Breast plate (Manubrium, Sternum and Xiphoid process) Posteriorly – Thoracic vertebre Laterally – Pleural cavities Superiorly – Superior thoracic aperture Inferiorly – Diaphram and contains: Heart Thymus gland Esophagus Trachea Primary bronchi Phrenic N. Vagus N. Thoracic duct Aorta Superior Vena Cava Inferior Vena Cava Azygos v. Sympathetic Chain Pulmonary a. Pulmonary v. Pericardial cavity Lymph nodes Fat HEART: Blood flow: Start at the Left Ventricle (apex) > Aortic Valve > Aorta > Body > Superior or Inferior Vena Cava > Right Atrium > Tricuspid Valve > Right Ventricle > Pulmonic Valve > Pulmonary Trunk > Pulmonary a. > Lungs > Pulmonary v. > Left Atrium > Bicuspid Valve > Start Over This represents the total blood circulation which consists of Systemic blood flow (from left ventricle to right ventricle) and Pulmonic blood flow (from right ventricle back to left ventricle). The heart has its own Coronary blood flow which is slightly different. When blood leaves the left ventricle and goes through the Aortic valve, some of it is taken back to the heart via the Right and Left Coronary a. This blood supplies the heart muscle and is drained through Coronary v. which combine to form the Coronary sinus. The Coronary sinus drains directly into the interior of the Right Atrium next to the Inferior Vena Cava. In this way, the blood that supplies the heart is turned over faster than the blood that goes to the rest of the body. When the parietal pericardium is opened, the major vessels entering and leaving the heart can be palpated. This can be done by feeling around in the Oblique and Tranverse pericardial sinuses. Note which vessels can be palpated in each sinus. When the heart is dissected, be sure to palpate the Fossa Ovalis which is the remains of the opening between the right and left atria present in fetal circulation. 3 Lab 4 LUNGS: once removed identify the following: Apex Superior Lobe Inferior Lobe Middle Lobe (on right lung only) Pulmonary ligament Root of lung Openings of the lungs (pulmonary a., pulmonary v. and bronchial) – the bronchial openings will be have the thickest vessel walls (due to the presence of cartilage); the arterial walls will be the next thickest; and the veinous walls will be the thinnest. Locationally, the arteries will be superior and anterior, the bronchials will be superior and posterior and the veins will be inferior (this is only for general location; vessels must be further assessed to be sure of type) With the lungs removed, it is now possible to see the vagus nerves passing posterior to the root of the lungs. Also note the pleural recesses. The lungs partially fill this space as they expand. 4.
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
    ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline.
    [Show full text]
  • Structure of the Human Body
    STRUCTURE OF THE HUMAN BODY Vertebral Levels 2011 - 2012 Landmarks and internal structures found at various vertebral levels. Vertebral Landmark Internal Significance Level • Bifurcation of common carotid artery. C3 Hyoid bone Superior border of thyroid C4 cartilage • Larynx ends; trachea begins • Pharynx ends; esophagus begins • Inferior thyroid A crosses posterior to carotid sheath. • Middle cervical sympathetic ganglion C6 Cricoid cartilage behind inf. thyroid a. • Inferior laryngeal nerve enters the larynx. • Vertebral a. enters the transverse. Foramen of C 6. • Thoracic duct reaches its greatest height C7 Vertebra prominens • Isthmus of thyroid gland Sternoclavicular joint (it is a • Highest point of apex of lung. T1 finger's breadth below the bismuth of the thyroid gland T1-2 Superior angle of the scapula T2 Jugular notch T3 Base of spine of scapula • Division between superior and inferior mediastinum • Ascending aorta ends T4 Sternal angle (of Louis) • Arch of aorta begins & ends. • Trachea ends; primary bronchi begin • Heart T5-9 Body of sternum T7 Inferior angle of scapula • Inferior vena cava passes through T8 diaphragm T9 Xiphisternal junction • Costal slips of diaphragm T9-L3 Costal margin • Esophagus through diaphragm T10 • Aorta through diaphragm • Thoracic duct through diaphragm T12 • Azygos V. through diaphragm • Pyloris of stomach immediately above and to the right of the midline. • Duodenojejunal flexure to the left of midline and immediately below it Tran pyloric plane: Found at the • Pancreas on a line with it L1 midpoint between the jugular • Origin of Superior Mesenteric artery notch and the pubic symphysis • Hilum of kidneys: left is above and right is below. • Celiac a.
    [Show full text]
  • Costochondritis
    Department of Rehabilitation Services Physical Therapy Standard of Care: Costochondritis Case Type / Diagnosis: Costochondritis ICD-9: 756.3 (rib-sternum anomaly) 727.2 (unspecified disorder of synovium) Costochondritis (CC) is a benign inflammatory condition of the costochondral or costosternal joints that causes localized pain. 1 The onset is insidious, though patient may note particular activity that exacerbates it. The etiology is not clear, but it is most likely related to repetitive trauma. Symptoms include intermittent pain at costosternal joints and tenderness to palpation. It most frequently occurs unilaterally at ribs 2-5, but can occur at other levels as well. Symptoms can be exacerbated by trunk movement and deep breathing, but will decrease with quiet breathing and rest. 2 CC usually responds to conservative treatment, including non-steroidal anti-inflammatory medication. A review of the relevant anatomy may be helpful in understanding the pathology. The chest wall is made up of the ribs, which connect the vertebrae posteriorly with the sternum anteriorly. Posteriorly, the twelve ribs articulate with the spine through both the costovertebral and costotransverse joints forming the most hypomobile region of the spine. Anteriorly, ribs 1-7 articulate with the costocartilages at the costochondral joints, which are synchondroses without ligamentous support. The costocartilage then attaches directly to the sternum as the costosternal joints, which are synovial joints having a capsule and ligamentous support. Ribs 8-10 attach to the sternum via the cartilage at the rib above, while ribs 11 and 12 are floating ribs, without an anterior articulation. 3 There are many causes of musculo-skeletal chest pain arising from the ribs and their articulations, including rib trauma, slipping rib syndrome, costovertebral arthritis and Tietze’s syndrome.
    [Show full text]
  • Thoracic Cage EDU - Module 2 > Thorax & Spine > Thorax & Spine
    Thoracic Cage EDU - Module 2 > Thorax & Spine > Thorax & Spine Thoracic cage • Protects the chest organs (the heart and lungs). Main Structures: The sternum (aka, breastbone) lies anteriorly. 12 thoracic vertebrae lie posteriorly. 12 ribs articulate with the thoracic vertebrae. Sternum • Manubrium (superiorly) • Body (long and flat, middle portion) • Xiphoid process - Easily injured during chest compression (for CPR). • Sternal angle - Where manubrium and body meet - Easily palpated to find rib 2 • Sternal indentations: - Jugular notch (aka, suprasternal notch) is on the superior border of the manubrium. - Clavicular notches are to the sides of the jugular notch; these are where the clavicles (aka, collarbones), articulate with the sternum. - Costal notches articulate with the costal cartilages of the ribs ("costal" refers to the ribs). Rib Types • True ribs - Ribs 1-7; articulate with the sternum directly via their costal cartilages. • False ribs - Ribs 8-12; do not articulate directly with the sternum. - Ribs 11 and 12 are "floating ribs," do not articulate at all with the sternum. 1 / 2 Rib Features • Head - Articulates with the vertebral body; typically comprises two articular surfaces separated by a bony crest. • Neck - Extends from the head, and terminates at the tubercle. • Tubercle - Comprises an articular facet, which is where the rib articulates with the transverse process of the vertebra. • Shaft - Longest portion of the rib, extends from tubercle to rib end. • Angle - Bend in rib, just lateral to tubercle. Rib/vertebra articulation • Head and tubercle of rib articulate with body and thoracic process of vertebrae. Intercostal spaces • The spaces between the ribs • House muscles and neurovascular structures.
    [Show full text]
  • The Digestive System
    69 chapter four THE DIGESTIVE SYSTEM THE DIGESTIVE SYSTEM The digestive system is structurally divided into two main parts: a long, winding tube that carries food through its length, and a series of supportive organs outside of the tube. The long tube is called the gastrointestinal (GI) tract. The GI tract extends from the mouth to the anus, and consists of the mouth, or oral cavity, the pharynx, the esophagus, the stomach, the small intestine, and the large intes- tine. It is here that the functions of mechanical digestion, chemical digestion, absorption of nutrients and water, and release of solid waste material take place. The supportive organs that lie outside the GI tract are known as accessory organs, and include the teeth, salivary glands, liver, gallbladder, and pancreas. Because most organs of the digestive system lie within body cavities, you will perform a dissection procedure that exposes the cavities before you begin identifying individual organs. You will also observe the cavities and their associated membranes before proceeding with your study of the digestive system. EXPOSING THE BODY CAVITIES should feel like the wall of a stretched balloon. With your skinned cat on its dorsal side, examine the cutting lines shown in Figure 4.1 and plan 2. Extend the cut laterally in both direc- out your dissection. Note that the numbers tions, roughly 4 inches, still working with indicate the sequence of the cutting procedure. your scissors. Cut in a curved pattern as Palpate the long, bony sternum and the softer, shown in Figure 4.1, which follows the cartilaginous xiphoid process to find the ventral contour of the diaphragm.
    [Show full text]
  • Lab #2: Organs of the Thoracic and Abdominal Cavities. Important: All Dissections of the Thoracic and Abdominal Cavities Will Be Done As a Class
    Lab #2: Organs of the thoracic and abdominal cavities. Important: All dissections of the thoracic and abdominal cavities will be done as a class. Do Not get ahead of the class for you may cut into something that we will want to examine later. Goals: Be able to …. Locate and explain the functions of the structures listed below: Neck Region: Abdominal Cavity: thymus gland umbilical chord thyroid gland peritoneum larynx mesenteries trachea liver esophagus stomach thoracic Cavity: spleen right and left pleural cavities small intestine (locate duodenum) right and left lungs pancreas pericardial cavity large intestines heart cecum Thoracic/Abdominal Division: colon diaphragm 13.3 Thoracic and Abdominal Incisions Pp. 164 – 165 Make incisions with class and instructor!!! 13.4 Neck Region, Thoracic Cavity and Abdominal Cavity Pp. 166-170 – Read all introductions, follow the procedures to locate the organs specified and answer all the questions. Pp. 172 – Answer questions #6-8, 11-17, 19 Arrange the organs in order by the way food travels through them: Stomach, esophagus, large intestines, mouth, small intestines, anus, rectum The inhalation of a breath of travels through several organs. Put the following organs in their proper order: Bronchi, nasal passages, bronchioles, larynx, pharynx, alveoli, trachea II. Respiration and Digestion Stations Goals: After this lab you should be able to………….. 1. Describe the appearance of villi and explain how the structure of villi supports their function. 2. Describe the internal structure of the lungs and explain the process of gas exchange. 3. Explain the difference in appearance and function between healthy alveoli and diseased alveoli.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Skeleton of the Spine and the Thorax
    SKELETON OF THE SPINE AND THE THORAX Pages 37- 42 and 54 - 57 Skeleton of the spine Vertebral Column . forms the basic structure of the trunk . consists of 33-34 vertebrae and intervertebral discs . 7 cervical, 12 thoracic, 5 lumbar = true vertebrae . sacrum and coccyx fused = false vertebrae Vertebra . all vertebrae have certain features in common (vertebral body, vertebral arch and seven processes) and regional differences . vertebral body . vetrebral arch pedicle lamina spinous process transverse process articular processes . vertebral foramen . vetrebral notch Cervical vertebrae . transverse foramen (foramen transversarium) in the transverse process . transverse processes of cervical vertebrae end laterally in two projection for attachment of cervical muscles anterior tubercle and posterior tubercle . bifid spinous process . C6 - tuberculum caroticum . C7 - vertebra prominens Atlas C1 . a ring-shaped bone . has neither a boby nor a spinous process . lateral masses . anterior and posterior arches . anterior and posterior tubercles . superior and inferior articular surfaces . articular facet for dens Axis C2 . serves as the pivot about which the rotation of the head occurs . odontoid process = dens . anterior articular facet Thoracic vertebrae . spinous process is long and running posteroinferiorly . superior costal facet . inferior costal facet . transverse process has an articulating facet for the tubercle of a rib = costal facet . the body is heart-shaped Lumbar vertebrae . massive bodies . accessory process - on the posterior surface of the base of each transverse process . mammilary process - on the posterior surface of the superior articular process . costal process Sacrum solid triangular bone . base . wings (alae) . apex . dorsal surface median crest intermediate crest lateral crest posterior sacral foramina superior art. processes .
    [Show full text]
  • 1 the Thoracic Wall I
    AAA_C01 12/13/05 10:29 Page 8 1 The thoracic wall I Thoracic outlet (inlet) First rib Clavicle Suprasternal notch Manubrium 5 Third rib 1 2 Body of sternum Intercostal 4 space Xiphisternum Scalenus anterior Brachial Cervical Costal cartilage plexus rib Costal margin 3 Subclavian 1 Costochondral joint Floating ribs artery 2 Sternocostal joint Fig.1.3 3 Interchondral joint Bilateral cervical ribs. 4 Xiphisternal joint 5 Manubriosternal joint On the right side the brachial plexus (angle of Louis) is shown arching over the rib and stretching its lowest trunk Fig.1.1 The thoracic cage. The outlet (inlet) of the thorax is outlined Transverse process with facet for rib tubercle Demifacet for head of rib Head Neck Costovertebral T5 joint T6 Facet for Tubercle vertebral body Costotransverse joint Sternocostal joint Shaft 6th Angle rib Costochondral Subcostal groove joint Fig.1.2 Fig.1.4 A typical rib Joints of the thoracic cage 8 The thorax The thoracic wall I AAA_C01 12/13/05 10:29 Page 9 The thoracic cage Costal cartilages The thoracic cage is formed by the sternum and costal cartilages These are bars of hyaline cartilage which connect the upper in front, the vertebral column behind and the ribs and intercostal seven ribs directly to the sternum and the 8th, 9th and 10th ribs spaces laterally. to the cartilage immediately above. It is separated from the abdominal cavity by the diaphragm and communicates superiorly with the root of the neck through Joints of the thoracic cage (Figs 1.1 and 1.4) the thoracic inlet (Fig.
    [Show full text]
  • Foramen in Xiphoid Process of Sternum
    [Sabnis et. al., Vol.7 (Iss.12): December 2019] ISSN- 2350-0530(O), ISSN- 2394-3629(P) Index Copernicus Value (ICV 2018): 86.20 DOI: https://doi.org/10.29121/granthaalayah.v7.i12.2019.317 Science FORAMEN IN XIPHOID PROCESS OF STERNUM Dr Anjali Sabnis 1, Dr. Prakash Mane 2 1 Professor and head, Department of Anatomy, MGM Medical College, Navi Mumbai 2 Tutor, Department of Anatomy, MGM Medical College, Navi Mumbai Abstract Xiphoid process is smallest and distal component of manubrium sternum which is located in epigastrium. Variations in size and shape of xiphoid process are commonly observed. During teaching sternum to 1st M.B.B.S. students of MGM Medical College, Navi Mumbai, two small foramina in two different xiphoid processes were noticed. Though presence of foramen in xiphoid process is not uncommon, their presence should not be ignored. During assessment of injuries in autopsy, post-mortem examination and radiological reporting knowledge of xiphoid process and foramina in xiphoid process will be helpful. Keywords: Foramen; Xiphoid Process; Manubrium; Sternum; Perforation. Cite This Article: Dr Anjali Sabnis, and Dr. Prakash Mane. (2019). “FORAMEN IN XIPHOID PROCESS OF STERNUM.” International Journal of Research - Granthaalayah, 7(12), 239-242. https://doi.org/10.29121/granthaalayah.v7.i12.2019.317. 1. Introduction Sternum is a flat bone which forms anterior boundary of thoracic wall. Prosternum or manubrium, mesosternum or body and metasternum or xiphoid process are the three components of sternum. The distal and smallest component is xiphoid process which is located in epigastrium. Xiphoid process is derived from the Greek word “xiphos” means straight sword1.
    [Show full text]
  • Calcification of Costal Cartilage in the Adult Rib Cage
    IRC-17-106 Calcification of Costal Cartilage in the Adult Rib Cage. IRCOBI conference 2017 SA. Holcombe, S. Ejima, SC. Wang Abstract Costal cartilage bridges the sternum and the ribs and plays a key role in the biomechanics of the chest. Costal cartilage is known to calcify in local regions with age, which can substantially stiffen its overall response to loading. However, the rate of accumulation of the calcified volume is not well quantified. Current computational models of the thorax assign a homogeneous soft material to cartilage segments, yet their finite element meshes are well suited to the specification of interstitial calcification zones, should applicable data become available. This study measures volumes and extents of costal cartilage calcification from 205 live subject CT scans. Significant increases in volume calcification – both in a given cartilage segment and in the lengthwise extent of those segments that experience calcification – are seen with age (p<0.0001). Age and sex accounted for 35% of all inter‐individual population variability. Specific recommendations for introducing person‐age via regional calcification to models of the costal cartilage are that (1) calcification volume within a segment should increase at the rate of 0.9 mm (for an equivalent cube edge length) per decade, and (2) should involve an increasing lengthwise extent of the cartilage segment at a rate of at least 7% per decade. Keywords age, calcification, cartilage, costal cartilage calcification, rib. I. INTRODUCTION The chest plays a major role in mitigating the forces that the body experiences during motor vehicle crash events. Costal cartilage is a key structural component of the chest, contributing to its rigidity and reinforcing the chest wall by bridging the space between the sternum and the ribs.
    [Show full text]