bioRxiv preprint doi: https://doi.org/10.1101/797803; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Bacterial derived vitamin B12 enhances predatory behaviors 2 in nematodes 3 Nermin Akduman1, James W. Lightfoot1, Waltraud Röseler1, Hanh Witte1, Wen- 4 Sui Lo1, Christian Rödelsperger1, Ralf J. Sommer1* 5 *corresponding author:
[email protected] 6 Affiliations: 1Department for Evolutionary Biology, Max Planck Institute for 7 Developmental Biology, Max Planck Ring 9, 72076 Tübingen Germany 8 KEYWORDS 9 Microbiome, microbiota, diet, surplus killing, metabolism, development, Pristionchus 10 pacificus, Caenorhabditis elegans 1 bioRxiv preprint doi: https://doi.org/10.1101/797803; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 11 The microbiome is known to affect host development, metabolism and 12 immunity, however, its impact on behaviors is only beginning to be 13 understood. Here, we investigate how bacteria modulate complex behaviors in 14 the nematode model organism Pristionchus pacificus. P. pacificus is a 15 predator feeding on the larvae of other nematodes including Caenorhabditis 16 elegans. Growing P. pacificus on different bacteria and testing their ability to 17 kill C.