Featured Arcle KDC YJMBI-65461; No. of pages: 21; 4C: ETV4 and AP1 Transcription Factors Form Multivalent Interactions with three Sites on the MED25 Activator-Interacting Domain Simon L. Currie 1,2, Jedediah J. Doane 1,2, Kathryn S. Evans 1,2, Niraja Bhachech 1,2, Bethany J. Madison 1,2, Desmond K.W. Lau 3, Lawrence P. McIntosh 3, Jack J. Skalicky 4, Kathleen A. Clark 1,2 and Barbara J. Graves 1,2,5 1 - Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84112-5500, USA 2 - Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5500, USA 3 - Departments of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada 4 - Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA 5 - Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA Correspondence to Barbara J. Graves: Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84112-5500, USA.
[email protected]. http://dx.doi.org/10.1016/j.jmb.2017.06.024 Edited by Prof. M.F. Summers Simon L. Currie, Jedediah J. Doane, Kathryn S. Evans and Barbara J. Graves Abstract The recruitment of transcriptional cofactors by sequence-specific transcription factors challenges the basis of high affinity and selective interactions. Extending previous studies that the N-terminal activation domain (AD) of ETV5 interacts with Mediator subunit 25 (MED25), we establish that similar, aromatic-rich motifs located both in the AD and in the DNA-binding domain (DBD) of the related ETS factor ETV4 interact with MED25.