Annual Report 2016/17
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California's Native Ferns
CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image. -
Rare Vascular Plant Surveys in the Polletts Cove and Lahave River Areas of Nova Scotia
Rare Vascular Plant Surveys in the Polletts Cove and LaHave River areas of Nova Scotia David Mazerolle, Sean Blaney and Alain Belliveau Atlantic Canada Conservation Data Centre November 2014 ACKNOWLEDGEMENTS This project was funded by the Nova Scotia Department of Natural Resources, through their Species at Risk Conservation Fund. The Atlantic Canada Conservation Data Centre appreciates the opportunity provided by the fund to have visited these botanically significant areas. We also thank Sean Basquill for mapping, fieldwork and good company on our Polletts Cove trip, and Cape Breton Highlands National Park for assistance with vehicle transportation at the start of that trip. PHOTOGRAPHY CREDITS All photographs included in this report were taken by the authors. 1 INTRODUCTION This project, funded by the Nova Scotia Species at Risk Conservation Fund, focused on two areas of high potential for rare plant occurrence: 1) the Polletts Cove and Blair River system in northern Cape Breton, covered over eight AC CDC botanist field days; and 2) the lower, non-tidal 29 km and selected tidal portions of the LaHave River in Lunenburg County, covered over 12 AC CDC botanist field days. The Cape Breton Highlands support a diverse array of provincially rare plants, many with Arctic or western affinity, on cliffs, river shores, and mature deciduous forests in the deep ravines (especially those with more calcareous bedrock and/or soil) and on the peatlands and barrens of the highland plateau. Recent AC CDC fieldwork on Lockhart Brook, Big Southwest Brook and the North Aspy River sites similar to the Polletts Cove and Blair River valley was very successful, documenting 477 records of 52 provincially rare plant species in only five days of fieldwork. -
Swing Through
Swing Through 20m Swing Through is an interactive agility garden that connects the user to Canada’s diverse landscape, as well as its major economic industry. The garden is a series of thirteen finished lumber posts that dangle from a large steel structure, creating “tree swings”. On the swings are climbing holds where visitors can use the holds to climb up and across the tree swings. Directly under the tree swings are thirteen colour-coordinated stumps that give the user an extra boost, if needed. The thirteen timber tree swings represent Canada’s ten provinces and three territories by using wood from the official provincial and territorial trees. Surrounding this structure of Canadian trees is a garden divided into thirteen sections displaying the native plants of each province and territory. This representative regional plantings encompassing the swings, creating a soft edge. 10m Swing Through allows visitors to touch, smell, and play with the various YT NT NU BC AB SK MB ON QC NL NB PE NS natural elements that make our country so green, prosperous and beautiful. PLAN | 1:75 Yukon Nunavut Alberta Manitoba Quebec New Brunswick Nova Scotia Tree: Subapline fir, Abies lasiocarpa Tree: Balsam Poplar, Populus balsamifera Tree: Lodgepole pine, Pinus contorta Tree: Balsam fir, Abies balsamea Tree: Yellow birch, Betula alleghaniensis Tree: Balsam fir, Abies balsamea Tree: Red spruce, Picea rubens Plants: Epilobium angustifolium, Plants: Saxifraga oppositifolia, Rubus Plants: Rosa acicularis Prunus virginiana, Plants: Pulsatilla ludoviciana, -
Ferns of the National Forests in Alaska
Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p. -
APPENDIX 1.—PLANT SPECIES COMMON and SCIENTIFIC NAMES Life Form Common Name Latin Name Alternate Name Tree/Shrub Acacia Acacia Mill
APPENDIX 1.—PLANT SPECIES COMMON AND SCIENTIFIC NAMES Life form Common name Latin name Alternate name Tree/shrub Acacia Acacia Mill. Shrub/subshrub//Forb/ Agave Agave L. herb Tree/shrub Alder Alnus Mill. Forb/herb Alpine chickweed Cerastium alpinum L. Graminoid Alpine fescue Festuca brachyphylla Schult. ex Schult. & Schult. f. Tree American chestnut Castanea dentata (Marsh.) Borkh. Shrub American tarwort Flourensia cernua DC. Tarbrush Forb/herb Annual ragweed Ambrosia artemisiifolia L. Shrub Antelope bitterbrush Purshia tridentata (Pursh) DC. Antelope brush; buckbrush Graminoid Arctic bluegrass Poa arctica R. Br. Lichen Arctic kidney Nephroma arcticum (L.) Torss. Subshrub/shrub Arctic willow Salix arctica Pall. Graminoid Arrow grass Triglochin L. Lichen Asahina’s cartilage lichend Ramalina asahinae (L.) Ach. Tree Ash Fraxinus L. Tree Balsam fi r Abies balsamea (L.) Mill. Tree Balsam poplar Populus balsamifera L. Tree Basswood Tilia L. Shrub Bearberry Arctostaphylos alpina (L.) Spreng. alpine bearberry Lichen Beard lichena Usnea Dill. ex Adans. Tree Beech Fagus L. Graminoid Big bluestem Andropogon gerardii Vitman Tree Big leaf maple Acer macrophyllum Pursh Tree/Shrub Big sagebrush Artemisia tridentata Nutt. Tree Bigtooth aspen Populus grandidentata Michx. Tree/shrub Black cherry Prunus serotina, Ehrh. Tree/shrub Black mangrove Avicennia germinans L. Tree Black oak Quercus velutina, Lam. Tree Black spruce Picea mariana (Mill.) Britton, Sterns & Poggenb. Graminoid Blue grama Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffi ths Tree Blue oak Quercus douglasii Hook. & Arn. Graminoid Bluestem Andropogon L. Tree Box elder Acer negundo L. Forb/herb Bracken fern Pteridium aquilinum var. pubescens Tree Bristlecone pine Pinus aristata Engelm. Subshrub/Shrub Brittlebush Encelia Adans. -
December 2014 ---International Rock Gardener--- December 2014
International Rock Gardener ISSN 2053-7557 Number 60 The Scottish Rock Garden Club December 2014 ---International Rock Gardener--- December 2014 The IRG Team sends our very best wishes and thanks to all readers and contributors around the world as we come to the close of 2014. This issue of IRG is our 60th – quite a milestone for what was begun as a one year experimental project. Production of the magazine does keep the IRG Team busy but of course, none of this would be possible without the generous input of our authors and photographers: To all of you - a special greeting of warm appreciation from Margaret, ZZ, Ian, Glassford and Richard. “Don’t tell me - more last minute editorial changes” from Theresa McCracken in Oregon So far, winter in the Northern Hemisphere has been veering between cold and mild to a degree that will confuse most of our plants, while in the South a drought is expected which will lead to problems for growers there. These are, I suppose, problems which are visited upon us most years, in some way or another. Perhaps this struggle against nature’s vagaries is part of what drives us in our challenge to “conquer” the difficulties and the puzzles our gardens present to us? Or perhaps we are just all happily obsessed? Cover picture: Dryas octopetala, the plant which is the SRGC’s emblem, from a painting by Anne Chambers www.srgc.net ISSN 2053-7557 ---International Rock Gardener--- ---Plant Portrait--- A Story of Saxifraga dinnikii forma alba by Frank Schmidt, photos the author, Adrian Young and Franto Paznocht Last autumn I was asked, at the Czech-German Meeting in Feuchtwangen, to write for the IRG about the history of Saxifraga dinnikii forma alba. -
Seeds of Success Program (SOS) Has Been Collecting Native Plant Seeds in Alaska for Over a Decade
Summary of Alaska Collections 2002-2012 AK025, AK040, AK930 A report submitted to BLM Alaska State Office 222 West 7th Avenue Anchorage AK 99501 Prepared by Alaska Natural Heritage Program University of Alaska Anchorage 707 A Street Anchorage AK 99501 and Michael Duffy Biological Consulting Services PO Box 243364 Anchorage AK 99524 Contents Introduction ……………………………………………………………… 1 Summary of collections …………………………………………………. 3 Seed storage and increase ………………………………………………… 5 Target list update ………………………………………………………… 8 Development of preliminary seed zones ………………………………… 12 Summary of collections by seed zone Arctic Alaska Seed Zone ………………………………………… 16 Interior Seed Zone ……………………………………………….. 20 West Alaska Seed Zone ………………………………………….. 26 Southwest Alaska Seed Zone …………………………………….. 32 South Central Alaska Seed Zone …………………………………. 34 Southeast Alaska Seed Zone ……………………………………… 40 Further recommendations ………………………………………………… 44 Literature cited …………………………………………………………… 45 Appendices ………………………………………………………………… 47 INTRODUCTION The Bureau of Land Management Seeds of Success Program (SOS) has been collecting native plant seeds in Alaska for over a decade. Beginning in 2002, collections have been made by staff from three offices: the Northern Field Office (whose SOS abbreviation is AK025), the Anchorage Field Office (AK040), and the Alaska State Office (AK930). Most of the AK025 and AK040 collections were made in partnership with the Kew Millennium Seed Bank Project (http://www.kew.org/science-conservation/save-seed- prosper/millennium-seed-bank/index.htm). Collecting trips over the period 2002-2007 produced 108 collections, and were made with the assistance of contract botanists from University of Alaska and the Alaska Plant Materials Center. With the conclusion of the Millennium Seed Bank partnership, the state program has focused on obtaining native plant seed to be stored and increased, with the objective of providing greater seed availability for restoration efforts. -
Jan S U D a Citační Ohlasy
Jan Suda Podklady ke jmenovacímu řízení – Citační ohlasy JAN S U D A CITAČNÍ OHLASY Citační ohlasy (s vyloučením autocitací) podle Web of Science k 1. 5. 2013 Celkový počet: 818 (včetně semiautocitací) / 670 (bez semiautocitací) (semiautocitace vyznačeny kurzivou) ----------------------------------------------------------------------------------------------------------------- Title: Estimation of nuclear DNA content in plants using flow cytometry Authors: Dolezel, J; Greilhuber, J; Suda, J Source: NATURE PROTOCOLS Volume: 2 Issue: 9 Pages: 2233-2244 DOI: 10.1038/nprot.2007.310 Published: 2007 1. Title: Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale Author(s): Duchoslav, Martin; Safarova, Lenka; Jandova, Michaela Source: ANNALS OF BOTANY Volume: 111 Issue: 3 Pages: 419-431 DOI: 10.1093/aob/mcs297 Published: MAR 2013 2. Title: Cellular aggregation is a key parameter associated with long term variability in paclitaxel accumulation in Taxus suspension cultures Author(s): Patil, Rohan A.; Kolewe, Martin E.; Roberts, Susan C. Source: PLANT CELL TISSUE AND ORGAN CULTURE Volume: 112 Issue: 3 Pages: 303-310 DOI: 10.1007/s11240-012-0237-3 Published: MAR 2013 3. Title: Chromosome counts and genome size of Leontopodium species (Asteraceae: Gnaphalieae) from south-western China Author(s): Russell, Anton; Safer, Stefan; Weiss-Schneeweiss, Hanna; et al. Source: BOTANICAL JOURNAL OF THE LINNEAN SOCIETY Volume: 171 Issue: 3 Pages: 627-636 DOI: 10.1111/boj.12011 Published: MAR 2013 4. Title: Nuclear genome size estimation and karyotype analysis of Lycium species (Solanaceae) Author(s): Chen, Jianjun; Liu, Xiaoli; Zhu, Linyao; et al. Source: SCIENTIA HORTICULTURAE Volume: 151 Pages: 46-50 DOI: 10.1016/j.scienta.2012.12.004 Published: FEB 28 2013 5. -
The Plant List
the list A Companion to the Choosing the Right Plants Natural Lawn & Garden Guide a better way to beautiful www.savingwater.org Waterwise garden by Stacie Crooks Discover a better way to beautiful! his plant list is a new companion to Choosing the The list on the following pages contains just some of the Right Plants, one of the Natural Lawn & Garden many plants that can be happy here in the temperate Pacific T Guides produced by the Saving Water Partnership Northwest, organized by several key themes. A number of (see the back panel to request your free copy). These guides these plants are Great Plant Picks ( ) selections, chosen will help you garden in balance with nature, so you can enjoy because they are vigorous and easy to grow in Northwest a beautiful yard that’s healthy, easy to maintain and good for gardens, while offering reasonable resistance to pests and the environment. diseases, as well as other attributes. (For details about the GPP program and to find additional reference materials, When choosing plants, we often think about factors refer to Resources & Credits on page 12.) like size, shape, foliage and flower color. But the most important consideration should be whether a site provides Remember, this plant list is just a starting point. The more the conditions a specific plant needs to thrive. Soil type, information you have about your garden’s conditions and drainage, sun and shade—all affect a plant’s health and, as a particular plant’s needs before you purchase a plant, the a result, its appearance and maintenance needs. -
Of Saxifraga Oppositifolia (Saxifragaceae)
Oecologia (1998) 114:60±66 Ó Springer-Verlag 1998 Felix Gugerli Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae) Received: 28 April 1997 / Accepted: 20 October 1997 Abstract Self-compatibility in high arctic and alpine necessarily select for increased sel®ng rates in a prefer- areas is regarded as an adaptation to low pollinator entially outcrossing species like S. oppositifolia. abundance. However, high genetic variability as a con- sequence of outcrossing is, with regard to population Key words Alpine plants á Elevation á Breeding system á persistence, favorable in highly stochastic environments Reproduction á Self-pollination such as tundra habitats. To evaluate these contradictory scenarios, I performed in situ pollination experiments to examine the breeding system of the predominant out- Introduction crosser Saxifraga oppositifolia in ten populations at two dierent elevations in the Swiss Alps. Pollinator limita- The general view about plant reproduction along the tion was detected at both elevations, but fruit set in macrogradient from temperate to arctic regions predicts naturally pollinated ¯owers was only slightly less at the increasing self-compatibility, apomixis, polyploidy, and higher elevation. Increased pollinator limitation at high vegetative reproduction, all of which tend to promote compared with low elevation thus could not be dem- the genetic uniformity of populations (Mosquin 1966). onstrated in this experiment. Hand-crossings yielded Corresponding changes are described for elevational equal mean proportion seed set at both elevations, and gradients in alpine areas, though knowledge about the so did hand-sel®ngs. This constant pattern of the breeding systems is often derived from phenological breeding system in S. -
Vermont Botanical & Bird Club Newsletter
VERMONT BOTANICAL & BIRD CLUB NEWSLETTER APRIL 2008 2008 ANNUAL MEETING ANNOUNCEMENT The 113th Annual Meeting of the Vermont Botanical and Bird Club will be held from Thursday, June 19 – Sunday, June 22, 2008 at Bolton Valley Resort in Bolton, Vermont. We look forward to this north-central Vermont location to put us in new territory for searching for plants and birds. We will be within range of Mount Mansfield State Forest which includes Lake Mansfield and Nebraska Notch. Camel’s Hump State Forest is to the south. Green Mountain Audubon Center and Birds of Vermont Museum are in the nearby town of Huntington. 2007 MEETING HIGHLIGHTS Troy Big Falls photo: Deborah Benjamin 1 The 112th Annual Meeting of the Vermont aerial tram to the top of Jay Peak and enjoyed Botanical and Bird Club convened on Thursday, another equally beautiful sunny start to the day. June 14, 2007 at Jay Peak Resort in Jay, Vermont and ended Sunday, June 17, 2007. The Saturday’s Field Trips were led by Annie Reed Club last visited this far northern location in and Jeff Parsons respectively. 1992. Saturday evening, the Annual Business Meeting On Thursday evening, President Deborah was held at the International Room. Of course, Benjamin introduced this year’s two scholarship the evening wouldn’t have been complete students: Shannon Bonney from Green Mountain without the Slides by Members Show. College in Poultney, Vermont and Hollis Smith of the University of Southern Maine in Portland, EVENING PROGRAMS Maine. THURSDAY, JUNE 14: Charlotte Bill informed the group that Jay Peak Resort is located in the Vermont Breeding Bird THE NATURAL (AND UNNATURAL) Atlas priority block of the Jay Peak quadrangle. -
Vascular Flora and Geoecology of Mont De La Table, Gaspésie, Québec
RHODORA, Vol. 117, No. 969, pp. 1–40, 2015 E Copyright 2015 by the New England Botanical Club doi: 10.3119/14-07; first published on-line March 11, 2015. VASCULAR FLORA AND GEOECOLOGY OF MONT DE LA TABLE, GASPE´ SIE, QUE´ BEC SCOTT W. BAILEY USDA Forest Service, 234 Mirror Lake Road, North Woodstock, NH 03262 e-mail: [email protected] JOANN HOY 21 Steam Mill Road, Auburn, NH 03032 CHARLES V. COGBILL 82 Walker Lane, Plainfield, VT 05667 ABSTRACT. The influence of substrate lithology on the distribution of many vascular and nonvascular plants has long been recognized, especially in alpine, subalpine, and other rocky habitats. In particular, plants have been classified as dependent on high-calcium substrates (i.e., calcicoles) based on common restriction to habitats developed in calcareous rocks, such as limestone and marble. In a classic 1907 paper on the influence of substrate on plants, M. L. Fernald singled out a particular meadow on Mont de la Table in the Chic-Choc Mountains of Que´bec for its unusual co-occurrence of strict calcicole and calcifuge (i.e., acidophile) plant taxa. We re-located this site, investigated substrate factors responsible for its unusual plant diversity, and documented current plant distributions. No calcareous rocks were found on site. However, inclusions of calcareous rocks were found farther up the mountain. The highest pH and dissolved calcium concentrations in surface waters were found in a series of springs that deliver groundwater, presumably influenced by calcareous rocks up the slope. Within the habitat delineated by common occurrences of calcicole species, available soil calcium varied by a factor of five and soil pH varied by almost 1.5 units, depending on microtopography and relative connection with groundwater.