Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS with Data from the British Crime Survey (2007)

Total Page:16

File Type:pdf, Size:1020Kb

Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS with Data from the British Crime Survey (2007) Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) © 2019 SAGE Publications Ltd. All Rights Reserved. This PDF has been generated from SAGE Research Methods Datasets. SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) Student Guide Introduction This SAGE Research Methods Dataset example explores how non-linear effects of the demographic variable, age, can be accounted for in analysis of survey data. A previous dataset looked at including age as a categorical dummy variable in a regression model to explore a non-linear relationship between age and a response variable. This example explores the use of polynomial regression to account for non-linear effects. Specifically, the dataset illustrates the inclusion of the demographic variable age as a quadratic (squared) term in an ordinary least squares (OLS) regression, using a subset of data from the British Crime Survey 2007. Analysing Age as a Non-Linear Predictor Variable Age is a key demographic variable frequently recorded in survey data as part of a broader set of demographic variables, such as education, income, race, ethnicity, and gender. These help to identify representativeness of a particular sample as well as describing participants and providing valuable information to aid analysis. Page 2 of 19 Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 Age can be considered as continuous, meaning that it can take on any value within a scale. It is also an interval-ratio variable, as each year represents the same interval of time and zero is a meaningful value. Measurements of age can be of particular interest to social scientists in understanding those changes in behaviours, beliefs, attitudes, and lifestyles that coincide with age. A researcher might want to understand the relationship between age and some other outcome, for example, whether people consume more alcohol as they get older. In a simple regression model, the coefficient for age will identify linear trends between age and the outcome variable where they exist. In the example just given, people might on average drink a certain amount more (or less) with each additional year of age. This approach assumes a relationship between the dependent variable and age that is linear, that can be described with a straight line, where the effect of age is consistent across all ages. The coefficient for age in a regression analysis will tell us the expected change in the dependent variable for each additional year of age which allows us to consider changes in the dependent variable for 10 additional years of age or 20 and so on but does not allow for effects of different magnitudes or different signs between different ages. If we think about age, we can easily imagine that there are many occasions where the relationship between age and some outcome might be non-linear, a common example being age and income, where income generally increases with age up to a certain point but then declines, or use of health services which might be higher when young and old but less frequent in the years between. A scatterplot of the variables of interest might suggest a curved relationship exists but in the Social Sciences, the data are often not that clear. A plot of the linear regression model residuals might also suggest to a researcher that the relationship between the dependent and independent variables is not a linear one. If a researcher has good theoretical reason to suspect a relationship might be non-linear, there are various Page 3 of 19 Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 ways to test that hypothesis. In another SAGE Dataset example, we look at how to turn a continuous age variable into a categorical variable for analysis, splitting age into coherent categories so that we can make comparisons between age groups. Another way of exploring non-linear relationships is through polynomial regression analysis which we consider here. In this case, we are not comparing one age group with another age group but exploring how the relationship between age and the dependent variable changes at different values of the age variable (or in other words at different ages). We can model a non-linear relationship by fitting a quadratic function, including both age and age-squared (age multiplied by age) as independent variables in the regression model. What Is Polynomial Regression? Polynomial regression allows us to account for non-linear relationships between a dependent and independent variable, using linear regression methods. Typically, where a curvilinear relationship is hypothesised between some dependent and independent variable, the square of the independent variable can be added to the model to see whether it improves the model fit, in comparison with the original model. This is called a quadratic or second-order polynomial. Where the parameter estimate for the quadratic term is statistically significant (p < .05) we see evidence of a non-linear relationship, although the exact nature of that relationship is not confirmed. Additional polynomials can be tested, for example, a cubic or third-order polynomial (independent variable cubed). Higher order polynomials can additionally be tested, but the lowest order that explains the most variance should be the aim. Regression models are typically estimated via OLS, which produces estimates of the slopes and intercept that minimize the sum of the squared differences between the observed values of the dependent variable and the values predicted based on Page 4 of 19 Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 the regression model. A dependent (or response) variable is expressed as a linear function of an independent (or explanatory) variable. This requires estimating an intercept (or constant) and a slope (or coefficient) for the independent variable that describes the change in the dependent variable for a one-unit increase in the independent variable. The coefficients of a regression model describe the strength and direction of the slope, and the relationship can be plotted as a straight line. Polynomial regression analysis is a special type of multiple regression which is linear in the parameters but not in the variables. We enter the square of our independent variable (or cubed, or raised to a higher power) in the model as if it were another independent variable in the analysis. This allows us to model a relationship where the effect of an independent variable on the dependent variable depends on different values of that independent variable. The coefficients themselves remain linear and additive as in multiple regression, but the variables themselves can be non-linear. We can see this more clearly when we consider the following equations: A simple linear regression model is often defined as in Equation 1. (1) Yi = β0 + β1X1i + β2X2i + ei Where: • Yi = individual values of the dependent variable • Xi = individual values of the independent variable • β0 = the intercept, or constant, associated with the regression model • β1 = the coefficient operating on the first independent variable • e = the unmodelled random, or stochastic, component of the dependent variable; often called the error term or the residual of the model Page 5 of 19 Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 This model assumes a linear relationship, where X has the same effect on Y for all values of X. A polynomial regression model for an nth degree polynomial can be defined as in Equation 2. (2) 2 3 n Yi = β0 + β1Xi + β2Xi + β3Xi ⋯ βnXi + ei We see then that the values of X can be squared, cubed, or raised to the power of 2 3 n n (X , X , X ), but the regression coefficients themselves remain linear (β0, β1, β2, β3, βn). The effect of X on Y will now be different for each different value of X. It is advisable to mean centre the X variable before including it in a polynomial regression, firstly to aid in interpretation of the results and secondly to reduce correlation between the X variable and the polynomial term, which is X multiplied by itself. A typical approach where a non-linear relationship is suspected is to start by including a quadratic term (X-squared) and if this has a significant effect which improves the model, including a cubed term to see whether it improves the model fit further. As a general principle it is advisable to keep to the simplest model that provides the best fit and make a judgement about whether any additional terms enhance the model enough to warrant inclusion, otherwise overfitting could occur, meaning that modelling results are over-dependent on the characteristics of the particular sample being analysed. All lower order terms must always be included in the model, so for example, a model with age-squared must also include age, a model with age-cubed includes both age-squared and age, and so on. Most commonly you would be including squared or cubed terms in the model. Page 6 of 19 Learn About Analysing Age in Survey Data Using Polynomial Regression in SPSS With Data From the British Crime Survey (2007) SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd.
Recommended publications
  • Application of Polynomial Regression Models for Prediction of Stress State in Structural Elements
    Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3187-3199 © Research India Publications http://www.ripublication.com/gjpam.htm Application of polynomial regression models for prediction of stress state in structural elements E. Ostertagová, P. Frankovský and O. Ostertag Assistant Professor, Department of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering, Technical University of Košice, Slovakia Associate Professors, Department of Applied Mechanics and Mechanical Engineering Faculty of Mechanical Engineering, Technical University of Košice, Slovakia Abstract This paper presents the application of linear regression model for processing of stress state data which were collected through drilling into a structural element. The experiment was carried out by means of reflection photoelasticity. The harmonic star method (HSM) established by the authors was used for the collection of final data. The non-commercial software based on the harmonic star method enables us to automate the process of measurement for direct collection of experiment data. Such software enabled us to measure stresses in a certain point of the examined surface and, at the same time, separate these stresses, i.e. determine the magnitude of individual stresses. A data transfer medium, i.e. a camera, was used to transfer the picture of isochromatic fringes directly to a computer. Keywords: principal normal stresses, harmonic star method, simple linear regression, root mean squared error, mean absolute percentage error, R-squared, adjusted R-squared, MATLAB. Introduction Residual stresses are stresses which occur in a material even if the object is not loaded by external forces. The analysis of residual stresses is very important when determining actual stress state of structural elements.
    [Show full text]
  • Mixed-Effects Polynomial Regression Models Chapter 5
    Mixed-effects Polynomial Regression Models chapter 5 1 Figure 5.1 Various curvilinear models: (a) decelerating positive slope; (b) accelerating positive slope; (c) decelerating negative slope; (d) accelerating negative slope 2 Figure 5.2 More curvilinear models: (a) positive to negative slope (β0 = 2, β1 = 8, β2 = −1.2); (b) inverted U-shaped slope (β0 = 2, β1 = 11, β2 = −2.2); (c) negative to positive slope (β0 = 14, β1 = −8, β2 = 1.2); (d) U-shaped slope (β0 = 14, β1 = −11, β2 = 2.2) 3 Expressing Time with Orthogonal Polynomials Instead of 1 1 1 1 1 1 0 0 X = Z = 0 1 2 3 4 5 0 1 4 9 16 25 use √ 1 1 1 1 1 1 / 6 √ 0 0 − − − X = Z = 5 3 1 1 3 5 / 70 √ 5 −1 −4 −4 −1 5 / 84 4 Figure 4.5 Intercept variance changes with coding of time 5 Top 10 reasons to use Orthogonal Polynomials 10 They look complicated, so it seems like you know what you’re doing 9 With a name like orthogonal polynomials they have to be good 8 Good for practicing lessons learned from “hooked on phonics” 7 Decompose more quickly than (orthogonal?) polymers 6 Sound better than lame old releases from Polydor records 5 Less painful than a visit to the orthodonist 4 Unlike ortho, won’t kill your lawn weeds 3 Might help you with a polygraph test 2 Great conversation topic for getting rid of unwanted “friends” 1 Because your instructor will give you an F otherwise 6 “Real” reasons to use Orthogonal Polynomials • for balanced data, and CS structure, estimates of polynomial fixed effects β (e.g., constant and linear) won’t change when higher-order
    [Show full text]
  • Design and Analysis of Ecological Data Landscape of Statistical Methods: Part 1
    Design and Analysis of Ecological Data Landscape of Statistical Methods: Part 1 1. The landscape of statistical methods. 2 2. General linear models.. 4 3. Nonlinearity. 11 4. Nonlinearity and nonnormal errors (generalized linear models). 16 5. Heterogeneous errors. 18 *Much of the material in this section is taken from Bolker (2008) and Zur et al. (2009) Landscape of statistical methods: part 1 2 1. The landscape of statistical methods The field of ecological modeling has grown amazingly complex over the years. There are now methods for tackling just about any problem. One of the greatest challenges in learning statistics is figuring out how the various methods relate to each other and determining which method is most appropriate for any particular problem. Unfortunately, the plethora of statistical methods defy simple classification. Instead of trying to fit methods into clearly defined boxes, it is easier and more meaningful to think about the factors that help distinguish among methods. In this final section, we will briefly review these factors with the aim of portraying the “landscape” of statistical methods in ecological modeling. Importantly, this treatment is not meant to be an exhaustive survey of statistical methods, as there are many other methods that we will not consider here because they are not commonly employed in ecology. In the end, the choice of a particular method and its interpretation will depend heavily on whether the purpose of the analysis is descriptive or inferential, the number and types of variables (i.e., dependent, independent, or interdependent) and the type of data (e.g., continuous, count, proportion, binary, time at death, time series, circular).
    [Show full text]
  • Polynomial Regression and Step Functions in Python
    Lab 12 - Polynomial Regression and Step Functions in Python March 27, 2016 This lab on Polynomial Regression and Step Functions is a python adaptation of p. 288-292 of \Intro- duction to Statistical Learning with Applications in R" by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. Original adaptation by J. Warmenhoven, updated by R. Jordan Crouser at Smith College for SDS293: Machine Learning (Spring 2016). In [30]: import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures import statsmodels.api as sm import statsmodels.formula.api as smf from patsy import dmatrix %matplotlib inline 1 7.8.1 Polynomial Regression and Step Functions In this lab, we'll explore how to generate the Wage dataset models we saw in class. In [2]: df= pd.read_csv('Wage.csv') df.head(3) Out[2]: year age sex maritl race education n 231655 2006 18 1. Male 1. Never Married 1. White 1. < HS Grad 86582 2004 24 1. Male 1. Never Married 1. White 4. College Grad 161300 2003 45 1. Male 2. Married 1. White 3. Some College region jobclass health health ins n 231655 2. Middle Atlantic 1. Industrial 1. <=Good 2. No 86582 2. Middle Atlantic 2. Information 2. >=Very Good 2. No 161300 2. Middle Atlantic 1. Industrial 1. <=Good 1. Yes logwage wage 231655 4.318063 75.043154 86582 4.255273 70.476020 161300 4.875061 130.982177 We first fit the polynomial regression model using the following commands: In [25]: X1= PolynomialFeatures(1).fit_transform(df.age.reshape(-1,1)) X2= PolynomialFeatures(2).fit_transform(df.age.reshape(-1,1)) X3= PolynomialFeatures(3).fit_transform(df.age.reshape(-1,1)) 1 X4= PolynomialFeatures(4).fit_transform(df.age.reshape(-1,1)) X5= PolynomialFeatures(5).fit_transform(df.age.reshape(-1,1)) This syntax fits a linear model, using the PolynomialFeatures() function, in order to predict wage using up to a fourth-degree polynomial in age.
    [Show full text]
  • The Simple Linear Regression Model, Continued
    The Simple Linear Regression Model, Continued Estimating σ2. Recall that if the data obey the simple linear model then each bivariate observation (xi, yi) satisfies yi = β0 + β1xi + ǫi 2 where the random error ǫi is N(0, σ ). Note that this model has three parameters: the 2 unknown regression coefficients β0 and β1 and the unknown random error variance σ . We 2 estimate β0 and β1 by the least squares estimates βˆ0 and βˆ1. How do we estimate σ ? Since the random errors ǫi have mean µ = 0, ∞ 2 2 2 σ = ǫ fǫ(ǫ)dǫ − µ (1) Z−∞ ∞ 2 = ǫ fǫ(ǫ)dǫ. (2) Z−∞ Since the ith residual ei provides an estimate of the ith random error ǫi, i.e., ei ≈ ǫi, it turns out we can estimate the integral in equation (2) by an average of the residuals squared: n 2 1 2 σˆ = ei (3) n − 2 Xi=1 n 1 2 = (yi − yˆi) (4) n − 2 Xi=1 Thus we estimate the random error variance σ2 byσ ˆ2. This is equation 7.32, page 544. Usually we don’t manually compute σˆ2 but use software (Minitab) instead. In the Minitab regression output, the standard deviation estimate σˆ is provided and labeled “S.” Improved Regression Models: Polynomial Models. Clearly a good regression model will satisfy all four of the regression assumptions: 1. The errors ǫ1, . , ǫn all have mean 0, i.e., µǫi = 0 for all i. 2 2 2 2. The errors ǫ1, . , ǫn all have the same variance σ , i.e., σǫi = σ for all i.
    [Show full text]
  • The Ability of Polynomial and Piecewise Regression Models to Fit Polynomial, Piecewise, and Hybrid Functional Forms
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 The Ability of Polynomial and Piecewise Regression Models to Fit Polynomial, Piecewise, and Hybrid Functional Forms A. Zapata The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3048 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] THE ABILITY OF POLYNOMIAL AND PIECEWISE REGRESSION MODELS TO FIT POLYNOMIAL, PIECEWISE, AND HYBRID FUNCTIONAL FORMS by A. ZAPATA A dissertation submitted to the Graduate Faculty in Educational Psychology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 ii © 2019 A. ZAPATA All Rights Reserved iii The Ability of Polynomial and Piecewise Regression Models to Fit Polynomial, Piecewise, and Hybrid Functional Forms by A. Zapata This manuscript has been read and accepted for the Graduate Faculty in Educational Psychology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date Keith Markus, Ph.D. Chair of Examining Committee Date Bruce Homer, Ph.D. Executive Officer Supervisory Committee: Sophia Catsambis, Ph.D. Keith Markus, Ph.D. David Rindskopf, Ph.D. THE CITY UNIVERSITY OF NEW YORK iv ABSTRACT The Ability of Polynomial and Piecewise Regression Models to Fit Polynomial, Piecewise, and Hybrid Functional Forms by A. Zapata Advisor: Keith Markus, Ph.D.
    [Show full text]
  • Polynomial Regression for Modeling Curvilinear Data a Biological Example Elisha Johnston, Palos Verdes Peninsula High School
    Paper 207-2019 Polynomial Regression for Modeling Curvilinear Data A Biological Example Elisha Johnston, Palos Verdes Peninsula High School ABSTRACT This paper provides an introduction to polynomial regression, which is useful for analyzing curvilinear data. I illustrate the power of the procedure with biological data simulated from my science fair research. I demonstrate an easy-to-implement approach for overcoming an issue common in polynomial regression, namely multicollinearity. I discuss a common criticism of polynomial regression (overfitting) and suggest as an alternative greater exploration of the interplay between substantive theory and statistical modeling. I write this paper as an introduction to the basics of polynomial regression for SAS programmers who are comfortable with multiple regression. INTRODUCTION After providing a conceptual overview of polynomial regression, I show how to fit a first, second, and third order polynomial regression models in SAS® to simulated dose-response data. For model selection, I discuss 2 general approaches. The first, more traditional in nature, emphasizes domain knowledge (substantive theory, in this case biological dose-response theory). The other, popularized by machine learning, emphasizes algorithmic decision-making. In discussing the distinctive perspectives of the two approaches, I seek to highlight the benefit of greater dialogue about the substantive and empirical insights as an alternative to discussions framed around overfitting. POLYNOMIAL REGRESSION: THE BASICS Cook and Weisberg (1999 p. 149) define polynomial regression with a single predictor, x, as 2 푑 퐸(푦|푥) = 훽0 + 훽1푥 + 훽1푥 + … + 훽푑푥 where E is the expected value of y at a given level of x, d is a positive integer which represents the th degree of the polynomial, β0 is the intercept and βi is the coefficient of the polynomial term with the i power (i = 1,2,…,d).
    [Show full text]
  • Polynomial Regression Models
    San José State University Math 261A: Regression Theory & Methods Polynomial Regression Models Dr. Guangliang Chen This lecture is based on the following part of the textbook: • Sections 7.1 – 7.4 Outline of the presentation: • Polynomial regression – Important considerations – Model fitting • Nonparametric methods – Kernel regression – Loess regression Polynomial Regression Introduction Previously we talked about transformations on the response and/or the predictor(s) for linearizing a nonlinear relationship. When this fails, we can turn to polynomial regression models such as k y = β0 + β1x + ··· + βkx + 2 2 y = β0 + β1x1 + β2x2 + β11x1 + β22x2 + β12x1x2 + to represent the nonlinear patterns: • The top model is called a kth-order polynomial model in one variable; • The bottom model is called a quadratic model in two variables. Dr. Guangliang Chen | Mathematics & Statistics, San José State University3/32 Polynomial Regression Polynomial models are very powerful to handle nonlinearity, because poly- nomials can approximate continuous functions within any given precision. However, such fitting problems can still be treated as linear regression: k y = β0 + β1 x + ··· + βk x + |{z} |{z} x1 xk 2 2 y = β0 + β1x1 + β2x2 + β11x1 + β22x2 + β12x1x2 + | {z } | {z } | {z } β3x3 β4x4 β5x5 Thus, we can readily utilize the corresponding theory, tools and techniques for linear regression to carry out polynomial regression. Dr. Guangliang Chen | Mathematics & Statistics, San José State University4/32 Polynomial Regression Important considerations However,
    [Show full text]
  • Analysis of Variance, Coefficient of Determination and F-Test for Local Polynomial Regression
    The Annals of Statistics 2008, Vol. 36, No. 5, 2085–2109 DOI: 10.1214/07-AOS531 c Institute of Mathematical Statistics, 2008 ANALYSIS OF VARIANCE, COEFFICIENT OF DETERMINATION AND F -TEST FOR LOCAL POLYNOMIAL REGRESSION By Li-Shan Huang 1 and Jianwei Chen University of Rochester and San Diego State University This paper provides ANOVA inference for nonparametric local polynomial regression (LPR) in analogy with ANOVA tools for the classical linear regression model. A surprisingly simple and exact local ANOVA decomposition is established, and a local R-squared quan- tity is defined to measure the proportion of local variation explained by fitting LPR. A global ANOVA decomposition is obtained by inte- grating local counterparts, and a global R-squared and a symmetric projection matrix are defined. We show that the proposed projection matrix is asymptotically idempotent and asymptotically orthogonal to its complement, naturally leading to an F -test for testing for no effect. A by-product result is that the asymptotic bias of the “pro- jected” response based on local linear regression is of quartic order of the bandwidth. Numerical results illustrate the behaviors of the proposed R-squared and F -test. The ANOVA methodology is also extended to varying coefficient models. 1. Introduction. Nonparametric regression methods such as local poly- nomial regression (LPR) (Fan and Gijbels [9], Wand and Jones [26]), smooth- ing splines (Eubank [8]) and penalized splines (Ruppert, Wand and Carroll [23]) are widely used to explore unknown trends in data analysis. Given the popularity of these methods, a set of analysis of variance (ANOVA) inference tools, analogous to those of linear models, will be very useful in providing interpretability for nonparametric curves.
    [Show full text]
  • A Tutorial on Bayesian Multi-Model Linear Regression with BAS and JASP
    A Tutorial on Bayesian Multi-Model Linear Regression with BAS and JASP Don van den Bergh∗1, Merlise A. Clyde2, Akash R. Komarlu Narendra Gupta1, Tim de Jong1, Quentin F. Gronau1, Maarten Marsman1, Alexander Ly1,3, and Eric-Jan Wagenmakers1 1University of Amsterdam 2Duke University 3Centrum Wiskunde & Informatica Abstract Linear regression analyses commonly involve two consecutive stages of statistical inquiry. In the first stage, a single `best' model is defined by a specific selection of relevant predictors; in the second stage, the regression coefficients of the winning model are used for prediction and for inference concerning the importance of the predictors. However, such second-stage inference ignores the model uncertainty from the first stage, resulting in overconfident parameter estimates that generalize poorly. These draw- backs can be overcome by model averaging, a technique that retains all models for inference, weighting each model's contribution by its poste- rior probability. Although conceptually straightforward, model averaging is rarely used in applied research, possibly due to the lack of easily ac- cessible software. To bridge the gap between theory and practice, we provide a tutorial on linear regression using Bayesian model averaging in JASP, based on the BAS package in R. Firstly, we provide theoretical background on linear regression, Bayesian inference, and Bayesian model averaging. Secondly, we demonstrate the method on an example data set from the World Happiness Report. Lastly, we discuss limitations of model averaging and directions for dealing with violations of model assumptions. ∗Correspondence concerning this article should be addressed to: Don van den Bergh, Uni- versity of Amsterdam, Department of Psychological Methods, Postbus 15906, 1001 NK Am- sterdam, The Netherlands.
    [Show full text]
  • A Bayesian Approach to Flexible Modeling of Multivariable Response Functions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF MULTIVARIATE ANALYSIS 34, 157-172 (1990) A Bayesian Approach to Flexible Modeling of Multivariable Response Functions DAVID M. STEINBERG* Department of Statistics, Tel-Aviv University, Ramat-Aviv 69978, Israel Communicated by C. R. Rao This paper presents a Bayesian approach to empirical regression modeling in which the response function is represented by a power series expansion in Hermite polynomials. The common belief that terms of low degree will reasonably approximate the response function is reflected by assigning prior distributions that exponentially downweight the coeff’cients of high-degree terms. The model thus includes the complete series expansion. A useful property of the Hermite expansion is that it can be easily extended to handle models with several explanatory variables. 0 1990 Academic Press, Inc. 1. INTRODUCTION Many scientific studies explore the relationship between a response variable Y and a set of continuous explanatory variables X1, . X,. Empirical models are often used when the nature of the response is unknown or is too complicated to provide a useful model. Empirical models that use simple graduating functions, such as low-degree polyno- mials, may lack suhicient flexibility to describe nonlinear relationships. For example, a polynomial of low degree may fail to provide a reasonable approximation to the true response function, but including terms of higher degree may produce an estimate with spurious oscillations. An alternative approach is to reflect uncertainty regarding the appropriate degree of a polynomial by assigning prior distributions that downweight the coefficients of high-degree terms.
    [Show full text]
  • Variance Tradeoff
    Nonparametric Methods Recap… Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 Nonparametric Methods • Kernel Density estimate (also Histogram) Weighted frequency • Classification - K-NN Classifier Majority vote • Kernel Regression Weighted average where 2 Kernel Regression as Weighted Least Squares Weighted Least Squares Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares i.e. set f(Xi) = b (a constant) 3 Kernel Regression as Weighted Least Squares set f(Xi) = b (a constant) constant Notice that 4 Local Linear/Polynomial Regression Weighted Least Squares Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares i.e. set (local polynomial of degree p around X) More in 10-702 (statistical machine learning) 5 Summary • Parametric vs Nonparametric approaches Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data Parametric models rely on very strong (simplistic) distributional assumptions Nonparametric models (not histograms) requires storing and computing with the entire data set. Parametric models, once fitted, are much more efficient in terms of storage and computation. 6 Summary • Instance based/non-parametric approaches Four things make a memory based learner: 1. A distance metric, dist(x,Xi) Euclidean (and many more) 2. How many nearby neighbors/radius to look at? k, D/h 3. A weighting function (optional) W based on kernel K 4. How to fit with the local points? Average, Majority vote, Weighted average, Poly fit 7 What you should know… • Histograms, Kernel density estimation – Effect of bin width/ kernel bandwidth – Bias-variance tradeoff • K-NN classifier – Nonlinear decision boundaries • Kernel (local) regression – Interpretation as weighted least squares – Local constant/linear/polynomial regression 8 Practical Issues in Machine Learning Overfitting and Model selection Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 True vs.
    [Show full text]