GPS Tutorial for Hikers How to Efficiently Use Your Mobile As GPS Navigator for Hiking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Android Euskaraz Windows Euskaraz Android Erderaz Windows Erderaz GNU/LINUX Sistema Eragilea Euskeraz Ubuntu Euskaraz We
Oharra: Android euskaraz Windows euskaraz Android erderaz Windows erderaz GNU/LINUX Sistema Eragilea euskeraz Ubuntu euskaraz Web euskaraz Ubuntu erderaz Web erderaz GNU/LINUX Sistema Eragilea erderaz APLIKAZIOA Bulegotika Adimen-mapak 1 c maps tools 2 free mind 3 mindmeister free 4 mindomo 5 plan 6 xmind Aurkezpenak 7 google slides 8 pow toon 9 prezi 10 sway Bulegotika-aplikazioak 11 andropen office 12 google docs 13 google drawing 14 google forms 15 google sheets 16 libreoffice 17 lyx 18 office online 19 office 2003 LIP 20 office 2007 LIP 21 office 2010 LIP 22 office 2013 LIP 23 office 2016 LIP 24 officesuite 25 wps office 26 writer plus 1/20 Harrobi Plaza, 4 Bilbo 48003 CAD 27 draftsight 28 librecad 29 qcad 30 sweet home 31 timkercad Datu-baseak 32 appserv 33 dbdesigner 34 emma 35 firebird 36 grubba 37 kexi 38 mysql server 39 mysql workbench 40 postgresql 41 tora Diagramak 42 dia 43 smartdraw Galdetegiak 44 kahoot Maketazioa 45 scribus PDF editoreak 46 master pdf editor 47 pdfedit pdf escape 48 xournal PDF irakurgailuak 49 adobe reader 50 evince 51 foxit reader 52 sumatraPDF 2/20 Harrobi Plaza, 4 Bilbo 48003 Hezkuntza Aditzak lantzeko 53 aditzariketak.wordpress 54 aditz laguntzailea 55 aditzak 56 aditzak.com 57 aditzapp 58 adizkitegia 59 deklinabidea 60 euskaljakintza 61 euskera! 62 hitano 63 ikusi eta ikasi 64 ikusi eta ikasi bi! Apunteak partekatu 65 flashcard machine 66 goconqr 67 quizlet 68 rincon del vago Diktaketak 69 dictation Entziklopediak 70 auñamendi eusko entziklopedia 71 elhuyar zth hiztegi entziklopedikoa 72 harluxet 73 lur entziklopedia tematikoa 74 lur hiztegi entziklopedikoa 75 wikipedia Esamoldeak 76 AEK euskara praktikoa 77 esamoldeapp 78 Ikapp-zaharrak berri Estatistikak 79 pspp 80 r 3/20 Harrobi Plaza, 4 Bilbo 48003 Euskara azterketak 81 ega app 82 egabai 83 euskal jakintza 84 euskara ikasiz 1. -
Web Hacking 101 How to Make Money Hacking Ethically
Web Hacking 101 How to Make Money Hacking Ethically Peter Yaworski © 2015 - 2016 Peter Yaworski Tweet This Book! Please help Peter Yaworski by spreading the word about this book on Twitter! The suggested tweet for this book is: Can’t wait to read Web Hacking 101: How to Make Money Hacking Ethically by @yaworsk #bugbounty The suggested hashtag for this book is #bugbounty. Find out what other people are saying about the book by clicking on this link to search for this hashtag on Twitter: https://twitter.com/search?q=#bugbounty For Andrea and Ellie. Thanks for supporting my constant roller coaster of motivation and confidence. This book wouldn’t be what it is if it were not for the HackerOne Team, thank you for all the support, feedback and work that you contributed to make this book more than just an analysis of 30 disclosures. Contents 1. Foreword ....................................... 1 2. Attention Hackers! .................................. 3 3. Introduction ..................................... 4 How It All Started ................................. 4 Just 30 Examples and My First Sale ........................ 5 Who This Book Is Written For ........................... 7 Chapter Overview ................................. 8 Word of Warning and a Favour .......................... 10 4. Background ...................................... 11 5. HTML Injection .................................... 14 Description ....................................... 14 Examples ........................................ 14 1. Coinbase Comments ............................. -
Volunteered Geographic Information System Design: Project and Participation Guidelines
International Journal of Geo-Information Article Volunteered Geographic Information System Design: Project and Participation Guidelines José-Pablo Gómez-Barrón *, Miguel-Ángel Manso-Callejo, Ramón Alcarria and Teresa Iturrioz MERCATOR Research Group: Geo-Information Technologies, Technical High School of Topography, Geodesy and Cartography Engineering, Technical University of Madrid (UPM), Campus Sur, 28031 Madrid, Spain; [email protected] (M.-A.M.-C.); [email protected] (R.A.); [email protected] (T.I.) * Correspondence: [email protected]; Tel.: +34-913-366-487 Academic Editors: Linda See, Vyron Antoniou, David Jonietz and Wolfgang Kainz Received: 14 March 2016; Accepted: 20 June 2016; Published: 5 July 2016 Abstract: This article sets forth the early phases of a methodological proposal for designing and developing Volunteered Geographic Information (VGI) initiatives based on a system perspective analysis in which the components depend and interact dynamically among each other. First, it focuses on those characteristics of VGI projects that present different goals and modes of organization, while using a crowdsourcing strategy to manage participants and contributions. Next, a tool is developed in order to design the central crowdsourced processing unit that is best suited for a specific project definition, associating it with a trend towards crowd-based or community-driven approaches. The design is structured around the characterization of different ways of participating, and the task cognitive demand of working on geo-information management, spatial problem solving and ideation, or knowledge acquisition. Then, the crowdsourcing process design helps to identify what kind of participants are needed and outline subsequent engagement strategies. This is based on an analysis of differences among volunteers’ participatory behaviors and the associated set of factors motivating them to contribute, whether on a crowd or community-sourced basis. -
Google Earth User Guide
Google Earth User Guide ● Table of Contents Introduction ● Introduction This user guide describes Google Earth Version 4 and later. ❍ Getting to Know Google Welcome to Google Earth! Once you download and install Google Earth, your Earth computer becomes a window to anywhere on the planet, allowing you to view high- ❍ Five Cool, Easy Things resolution aerial and satellite imagery, elevation terrain, road and street labels, You Can Do in Google business listings, and more. See Five Cool, Easy Things You Can Do in Google Earth Earth. ❍ New Features in Version 4.0 ❍ Installing Google Earth Use the following topics to For other topics in this documentation, ❍ System Requirements learn Google Earth basics - see the table of contents (left) or check ❍ Changing Languages navigating the globe, out these important topics: ❍ Additional Support searching, printing, and more: ● Making movies with Google ❍ Selecting a Server Earth ❍ Deactivating Google ● Getting to know Earth Plus, Pro or EC ● Using layers Google Earth ❍ Navigating in Google ● Using places Earth ● New features in Version 4.0 ● Managing search results ■ Using a Mouse ● Navigating in Google ● Measuring distances and areas ■ Using the Earth Navigation Controls ● Drawing paths and polygons ● ■ Finding places and Tilting and Viewing ● Using image overlays Hilly Terrain directions ● Using GPS devices with Google ■ Resetting the ● Marking places on Earth Default View the earth ■ Setting the Start ● Location Showing or hiding points of interest ● Finding Places and ● Directions Tilting and -
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles. -
Part V: the Global Positioning System ______
PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment. -
2015 GPS SPS Performance Analysis
An Analysis of Global Positioning System (GPS) Standard Positioning System (SPS) Performance for 2015 TR-SGL-17-04 March 2017 Space and Geophysics Laboratory Applied Research Laboratories The University of Texas at Austin P.O. Box 8029 Austin, TX 78713-8029 Brent A. Renfro, Jessica Rosenquest, Audric Terry, Nicholas Boeker Contract: NAVSEA Contract N00024-01-D-6200 Task Order: 5101147 Distribution A: Approved for public release; Distribution is unlimited. This Page Intentionally Left Blank Executive Summary Applied Research Laboratories, The University of Texas at Austin (ARL:UT) examined the performance of the Global Positioning System (GPS) throughout 2015 for the Global Positioning Systems Directorate (SMC/GP). This report details the results of that performance analysis. This material is based upon work supported by the US Air Force Space & Missile Systems Center Global Positioning Systems Directorate through Naval Sea Systems Command Contract N00024-01-D-6200, task order 5101147, \FY15 GPS Signal and Performance Analysis". Performance is defined by the 2008 Standard Positioning Service (SPS) Performance Standard (SPS PS). The performance standards provide the U.S. government's assertions regarding the expected performance of GPS. This report does not address each of the assertions in the performance standards. This report emphasizes those assertions which can be verified by anyone with knowledge of standard GPS data analysis practices, familiarity with the relevant signal specification, and access to a Global Navigation Satellite System (GNSS) data archive. The assertions evaluated include those of accuracy, integrity, continuity, and availability of the GPS signal-in-space (SIS) and the position performance standards. Chapter 2 of the report includes a tabular summary of the assertions that were evaluated and a summary of the results. -
Manual Oruxmaps V.7.0.0
Manual OruxMaps v.7.0.0 ¡COLABRORATE WITH ORUXMAPS! You can help the project: Donate using Paypal Download OruxMaps Donate WORKING WITH THE MANUALS It is an easy task if we do it between all. Español English ***NEEDS A LOT OF HELP*** 1 INDEX NEWS 7.0. VERSION ............................................................................................ 3 NEWS 6.5.0 VERSION .......................................................................................... 6 QUICK START ................................................................................................... 13 Widget ..............................................................................................................................14 MAPS ............................................................................................................... 15 Online Maps ....................................................................................................................16 WMS (Web Map Service) ......................................................................................18 Composite maps .......................................................................................................22 Maps Off-Line ................................................................................................................24 Index map .......................................................................................................................29 Nigth mode .....................................................................................................................29 -
Global and Complementary Geospatial Data for Sdgs
Global and Complementary (Non-authoritative) Geospatial Data for SDGs: Role and Utilisation Stephan Arnold, Jun Chen & Olav Eggers A report produced jointly by the Task Team on Global Data and Task Team on Alternative Data Sources established in December 2016 by the Working Group on Geospatial Information of the Inter-agency and Expert Group on Sustainable Development Goal Indicators (IAEG-SDGs) with contributions from Mr. Stephan Arnold, Prof. Jun Chen, Mr. Olav Eggers, Prof. Zhilin Li, Ms. Sandra Liliana Moreno Mayorga, Prof. John Mills, and Prof. John Shi. This report was reviewed by members of the working group before being made available to IAEG-SDGs at its ninth meeting in March 2019. Content 1 PREAMBLE ................................................................................................................................. 3 1.1 Importance of geospatial data to SDGs ............................................................................................... 3 1.2 Scope of this report ............................................................................................................................. 3 2 GLOBAL AND COMPLEMENTARY GEOSPATIAL DATASETS ....................................... 4 2.1 National versus international (global) mapping initiatives .................................................................. 4 2.1.1 Topographic maps and Digital Elevation Models .................................................................................. 4 2.1.2 Satellite Image Data ............................................................................................................................. -
Deriving Incline for Street Networks from Voluntarily Collected GPS Traces
Methods of Geoinformation Science Institute of Geodesy and Geoinformation Science Faculty VI Planning Building Environment MASTER’S THESIS Deriving incline for street networks from voluntarily collected GPS traces Submitted by: Steffen John Matriculation number: 343372 Email: [email protected] Supervisors: Prof. Dr.-Ing. Marc-O. Löwner (TU Berlin) Dr.-Ing. Stefan Hahmann (Universität Heidelberg) Submission date: 24.07.2015 in cooperation with: GIScience Group Institute of Geography Faculty of Chemistry and Earth Sciences Declaration of Authorship I, Steffen John, declare that this thesis titled, 'Deriving incline for street networks from voluntarily collected GPS traces’ and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this Uni- versity. Where any part of this thesis has previously been submitted for a degree or any other qualifi- cation at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exact- ly what was done by others and what I have contributed myself. Signed: Date: ii Abstract The knowledge of incline is useful for many use-cases in navigation for electricity-powered vehicles, cyclists or mobility-restricted people (e.g. -
Using Handheld Global Positioning System Receivers for the Wheat Objective Yield Survey
Using Handheld Global United States Positioning System Department of Agriculture Receivers for the Wheat Objective Yield Survey National Agricultural Michael W. Gerling Statistics Service Research and Development Division Washington DC 20250 RDD Research Report Number RDD-06-04 September 2006 This paper was prepared for limited distribution to the research community outside the United States Department of Agriculture. The views expressed herein are not necessarily those of the National Agricultural Statistics Service or of the United States Department of Agriculture. EXECUTIVE SUMMARY In 2005, Washington field enumerators successfully showed that handheld Global Positioning System (GPS) receivers could be utilized for the Agricultural Resource Management Survey Phase II and for the June Area Survey. Next, the Washington Field Office and the Research and Development Division investigated if GPS receivers could assist field enumerators with the Wheat Objective Yield Survey. Currently, Wheat Objective Yield Survey field enumerators go to specified areas of the sampled wheat fields, lay out two objective yield units and record various crop counts. Every month until the fields are harvested, the enumerator returns to the same units and records crop counts. Sometimes a field enumerator has difficulty finding the same location again or a different field enumerator may need to enumerate the field and is unable to find the same location. This costs NASS in field enumeration time, and in those instances where the units were unable to be found, the data quality suffers. In this study, 23 Washington field enumerators were provided with handheld GPS receivers to aid in the enumeration of 160 winter wheat samples. On their initial visit to each sampled field, they recorded the latitude and longitude coordinates of each unit as it was being laid out. -
Formating Rules
Applied Computer Systems doi: 10.1515/acss-2015-0010 _______________________________________________________________________________________________ 2015/17 Towards a Standard-Based Domain-Specific Platform to Describe Points of Interest Vicente García-Díaz 1, Jordán Pascual Espada 2, B. Cristina Pelayo García-Bustelo 3, Juan Manuel Cueva Lovelle 4, Janis Osis 5, 1, 2, 3, 4 University of Oviedo, Spain, 5 Riga Technical University, Latvia Abstract – With the proliferation of mobile and distributed Given the importance of POIs, especially from the systems capable of providing its geoposition and even the geographical point of view, large databases of information are geoposition of any other element, commonly called point of being created, for example, the OpenStreetMap Project, interest, developers have created a multitude of new software applications. For this purpose, different technologies such as the consisting of a knowledge base that creates and distributes GPS or mobile networks are used. There are different languages user-generated geographic data for the world [6]. However, or formats used to define these points of interest and some one of the major problems encountered when working with applications that facilitate such work. However, there is no POIs is the heterogeneity that exists in the formats used to globally accepted standard language, which complicates the represent them. There are several reasons that led to this intercommunication, portability and re-usability of the situation among which may include: 1) a large number