Mean, Median and Mode

Total Page:16

File Type:pdf, Size:1020Kb

Mean, Median and Mode Mean, Median and Mode A CDF and pdf are completely described by their equations. But we often don't know the equation of the CDF/pdf, or want their equation summarized in a way we find easier to handle. These less informative summaries are called "measures". There are many different measures. The ones discussed on this page deal with how to describe what can be called the center, or most likely value, of a random variable. In other words, if you have to replace a random variable with a number, this these measures are in some sense the best number to use. As with many types of measures, there is no single best way to do this. There are some options, and which option you pick often depends on what questions you hope to answer, or what form you want your answer to take. The three measures of center described below are the mean, median and mode. Mean (Average, Expected Value, Center of Gravity, Center of Mass) The mean is a very widely used measure, and is also known by the name average and expected value. If a discrete random variable can take on values of x1, x2, … xM, and they all occur equally likely, then the mean is the sum of the possible values, divided by M. In this case, the probability of any particular y value will be 1/M, so we could rewrite the mean as The expression on the far right is handy, because it can be used when the probability of the various values yi are not all equal to each other. The more likely EE 5440 Page 1 probability of the various values yi are not all equal to each other. The more likely values will have a bigger impact on the mean than the less likely values. The definition for the mean can easily be extended to cover continuous random variables. Simply replace the summation with an integral, and the probability with the pdf. It is easy to spot the mean in some pdf curves. For example, in a gaussian curve the mean is the peak of the pdf. But in other pdf, like the exponential, there is no clear distinguishing feature to identify the mean. The same is true for the CDF. In a Gaussian CDF, the mean is where the CDF hits 0.5. But this is not true for other CDF. In general, it may not be easy to quickly identify the mean from a pdf or CDF curve. The mean is sometimes called the center of mass or center of gravity. If the pdf describes the density of a rod along its length, then the mean is the point at which the rod will balance. Means are easy to calculate, and clearly defined for both discrete and continuous random variables. While they can be used for any pdf or CDF, they are typically most useful when the pdf is concentrated around one point, and falls off smoothly and monotonically from there. Means are sometimes thought to be inappropriately influenced by outliers. These are possible outcomes of our experiment which are highly unlikely (so fX(y) or P(y) is small) but which have very large, or unusual values for y. The mean also is unreasonable for some discrete probability distributions, because the mean will end up being a value the random variable can never assume. Outlier Example: I sell coffee (which costs me $0.01 per cup to make) in my shop. The shop can easily handle 1000 people per day. I'd like to charge them as much as possible, but not so much that they quit coming. There are 10 000 people who pass by my shop each day. If I select one at random, I would find their income is a uniformly distributed random variable, between $45,000 / year and $55,000 / year. A business magazine suggests people will pay 1/10,000 of their annual salary for a EE 5440 Page 2 A business magazine suggests people will pay 1/10,000 of their annual salary for a cup of coffee. The mean income of my customers is $50,000, so I select a price of $5/cup, and business is good. A rich person who makes $1,000,000,000 / year moves to town. Nobody else's income changes. The 10,001 people who pass by my shop each day now have a mean income near %150,000 / year. Does it make sense to raise the price of my coffee to $15/cup, since the mean income just went up by a factor of 3 when one person moved in? Answer: Probably not. You may lose nearly all your business because most people consider your coffee three times too expensive for them. The rich person might by one $15 cup per day, but that's not going to make up for the money you lose. The mean is probably a bad measure of the center, when you have an outlier like this. Meaningless Mean Example: If you pick a family at random from my neighborhood, there's a 45% chance they have no children, a 30% chance they have 1, 15% chance they have 2, and 10% chance they have 3. People will often find it odd if I say the typical family has 0.9 children. While 0.9 is the mean number of children, no families have that number of children, and it does not even make sense to talk about an individual family having a fractional number of children. Median (Half-life) There is a 50% chance a random variable will be above its median value, and a 50% chance it will be below it. P(X>x_median)=P(X<x_median)=0.5=50% The median is very easy to spot on a CDF, because FX(xmedian)=0.5 EE 5440 Page 3 It is easy to think about on the pdf curve, but may be a little more difficult to calculate. The median is the point that has one half of the area of the pdf to the right, and one half of the pdf area to the left The median is not well defined for some discrete random variables. Consider a binary random variable that has a 25% chance of being 10 and a 75% chance of being 20. Medians are useful when you want to limit how much a highly unlikely event, at a EE 5440 Page 4 Medians are useful when you want to limit how much a highly unlikely event, at a highly unusual value. Return to the outlier example above. When the very rich person moves to town, the median income barely changes. Mode The mode is the most common value of random variable X. It is easy to spot on the pdf, as it is the value of y where fX(x) hits the largest value. Note: we don't care what the largest value of fX(x) is at that point, we only care about where it occurs You can also think of this as the location of a local maximum in the pdf. The mode is harder to spot in the CDF, as it is the point of maximum slope. There may be more than one mode. These are known as bimodal, trimodal, or in general multi-modal distributions. In these cases, the pdf simply has to have a local maximum to qualify as being a mode. The pdf may, but does not have to, reach the same value for each of the modes. EE 5440 Page 5 In a discrete random variable, it is the value that occurs more frequently than any other. There may be multiple values that share this property, in which case it is again a multimodal distribution. Modes are commonly used for discrete random variables, where one wants the answer to be one of the possibilities. In these cases, the mode is the location where the CDF has the largest jump. Return to the meaningless mean example above, where 45% of the families have 0 children, 30% have 1, 15% have 2 and 10% have 3. The mode is 0. That means that if you pick a family at random, all families being equally likely to be selected, you are more likely to select a family with zero children than you are a family with one child. That last statement applies if you compare changes of selecting zero or two children, and also if you select zero or three children. Despite the mode being 0, you are more likely to select a child with one or more children, than you are a family with no children. EE 5440 Page 6 .
Recommended publications
  • 5. the Student T Distribution
    Virtual Laboratories > 4. Special Distributions > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5. The Student t Distribution In this section we will study a distribution that has special importance in statistics. In particular, this distribution will arise in the study of a standardized version of the sample mean when the underlying distribution is normal. The Probability Density Function Suppose that Z has the standard normal distribution, V has the chi-squared distribution with n degrees of freedom, and that Z and V are independent. Let Z T= √V/n In the following exercise, you will show that T has probability density function given by −(n +1) /2 Γ((n + 1) / 2) t2 f(t)= 1 + , t∈ℝ ( n ) √n π Γ(n / 2) 1. Show that T has the given probability density function by using the following steps. n a. Show first that the conditional distribution of T given V=v is normal with mean 0 a nd variance v . b. Use (a) to find the joint probability density function of (T,V). c. Integrate the joint probability density function in (b) with respect to v to find the probability density function of T. The distribution of T is known as the Student t distribution with n degree of freedom. The distribution is well defined for any n > 0, but in practice, only positive integer values of n are of interest. This distribution was first studied by William Gosset, who published under the pseudonym Student. In addition to supplying the proof, Exercise 1 provides a good way of thinking of the t distribution: the t distribution arises when the variance of a mean 0 normal distribution is randomized in a certain way.
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]
  • Random Variables and Probability Distributions 1.1
    RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 1. DISCRETE RANDOM VARIABLES 1.1. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable infinite number of distinct values. A discrete random variable can be defined on both a countable or uncountable sample space. 1.2. Probability for a discrete random variable. The probability that X takes on the value x, P(X=x), is defined as the sum of the probabilities of all sample points in Ω that are assigned the value x. We may denote P(X=x) by p(x) or pX (x). The expression pX (x) is a function that assigns probabilities to each possible value x; thus it is often called the probability function for the random variable X. 1.3. Probability distribution for a discrete random variable. The probability distribution for a discrete random variable X can be represented by a formula, a table, or a graph, which provides pX (x) = P(X=x) for all x. The probability distribution for a discrete random variable assigns nonzero probabilities to only a countable number of distinct x values. Any value x not explicitly assigned a positive probability is understood to be such that P(X=x) = 0. The function pX (x)= P(X=x) for each x within the range of X is called the probability distribution of X. It is often called the probability mass function for the discrete random variable X. 1.4. Properties of the probability distribution for a discrete random variable.
    [Show full text]
  • Chapter 8 Fundamental Sampling Distributions And
    CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS 8.1 Random Sampling pling procedure, it is desirable to choose a random sample in the sense that the observations are made The basic idea of the statistical inference is that we independently and at random. are allowed to draw inferences or conclusions about a Random Sample population based on the statistics computed from the sample data so that we could infer something about Let X1;X2;:::;Xn be n independent random variables, the parameters and obtain more information about the each having the same probability distribution f (x). population. Thus we must make sure that the samples Define X1;X2;:::;Xn to be a random sample of size must be good representatives of the population and n from the population f (x) and write its joint proba- pay attention on the sampling bias and variability to bility distribution as ensure the validity of statistical inference. f (x1;x2;:::;xn) = f (x1) f (x2) f (xn): ··· 8.2 Some Important Statistics It is important to measure the center and the variabil- ity of the population. For the purpose of the inference, we study the following measures regarding to the cen- ter and the variability. 8.2.1 Location Measures of a Sample The most commonly used statistics for measuring the center of a set of data, arranged in order of mag- nitude, are the sample mean, sample median, and sample mode. Let X1;X2;:::;Xn represent n random variables. Sample Mean To calculate the average, or mean, add all values, then Bias divide by the number of individuals.
    [Show full text]
  • Chapter 4: Central Tendency and Dispersion
    Central Tendency and Dispersion 4 In this chapter, you can learn • how the values of the cases on a single variable can be summarized using measures of central tendency and measures of dispersion; • how the central tendency can be described using statistics such as the mode, median, and mean; • how the dispersion of scores on a variable can be described using statistics such as a percent distribution, minimum, maximum, range, and standard deviation along with a few others; and • how a variable’s level of measurement determines what measures of central tendency and dispersion to use. Schooling, Politics, and Life After Death Once again, we will use some questions about 1980 GSS young adults as opportunities to explain and demonstrate the statistics introduced in the chapter: • Among the 1980 GSS young adults, are there both believers and nonbelievers in a life after death? Which is the more common view? • On a seven-attribute political party allegiance variable anchored at one end by “strong Democrat” and at the other by “strong Republican,” what was the most Democratic attribute used by any of the 1980 GSS young adults? The most Republican attribute? If we put all 1980 95 96 PART II :: DESCRIPTIVE STATISTICS GSS young adults in order from the strongest Democrat to the strongest Republican, what is the political party affiliation of the person in the middle? • What was the average number of years of schooling completed at the time of the survey by 1980 GSS young adults? Were most of these twentysomethings pretty close to the average on
    [Show full text]
  • Notes Mean, Median, Mode & Range
    Notes Mean, Median, Mode & Range How Do You Use Mode, Median, Mean, and Range to Describe Data? There are many ways to describe the characteristics of a set of data. The mode, median, and mean are all called measures of central tendency. These measures of central tendency and range are described in the table below. The mode of a set of data Use the mode to show which describes which value occurs value in a set of data occurs most frequently. If two or more most often. For the set numbers occur the same number {1, 1, 2, 3, 5, 6, 10}, of times and occur more often the mode is 1 because it occurs Mode than all the other numbers in the most frequently. set, those numbers are all modes for the data set. If each number in the set occurs the same number of times, the set of data has no mode. The median of a set of data Use the median to show which describes what value is in the number in a set of data is in the middle if the set is ordered from middle when the numbers are greatest to least or from least to listed in order. greatest. If there are an even For the set {1, 1, 2, 3, 5, 6, 10}, number of values, the median is the median is 3 because it is in the average of the two middle the middle when the numbers are Median values. Half of the values are listed in order. greater than the median, and half of the values are less than the median.
    [Show full text]
  • Random Processes
    Chapter 6 Random Processes Random Process • A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). • For a fixed (sample path): a random process is a time varying function, e.g., a signal. – For fixed t: a random process is a random variable. • If one scans all possible outcomes of the underlying random experiment, we shall get an ensemble of signals. • Random Process can be continuous or discrete • Real random process also called stochastic process – Example: Noise source (Noise can often be modeled as a Gaussian random process. An Ensemble of Signals Remember: RV maps Events à Constants RP maps Events à f(t) RP: Discrete and Continuous The set of all possible sample functions {v(t, E i)} is called the ensemble and defines the random process v(t) that describes the noise source. Sample functions of a binary random process. RP Characterization • Random variables x 1 , x 2 , . , x n represent amplitudes of sample functions at t 5 t 1 , t 2 , . , t n . – A random process can, therefore, be viewed as a collection of an infinite number of random variables: RP Characterization – First Order • CDF • PDF • Mean • Mean-Square Statistics of a Random Process RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function of timeà We use second order estimation RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function
    [Show full text]
  • 11. Parameter Estimation
    11. Parameter Estimation Chris Piech and Mehran Sahami May 2017 We have learned many different distributions for random variables and all of those distributions had parame- ters: the numbers that you provide as input when you define a random variable. So far when we were working with random variables, we either were explicitly told the values of the parameters, or, we could divine the values by understanding the process that was generating the random variables. What if we don’t know the values of the parameters and we can’t estimate them from our own expert knowl- edge? What if instead of knowing the random variables, we have a lot of examples of data generated with the same underlying distribution? In this chapter we are going to learn formal ways of estimating parameters from data. These ideas are critical for artificial intelligence. Almost all modern machine learning algorithms work like this: (1) specify a probabilistic model that has parameters. (2) Learn the value of those parameters from data. Parameters Before we dive into parameter estimation, first let’s revisit the concept of parameters. Given a model, the parameters are the numbers that yield the actual distribution. In the case of a Bernoulli random variable, the single parameter was the value p. In the case of a Uniform random variable, the parameters are the a and b values that define the min and max value. Here is a list of random variables and the corresponding parameters. From now on, we are going to use the notation q to be a vector of all the parameters: Distribution Parameters Bernoulli(p) q = p Poisson(l) q = l Uniform(a,b) q = (a;b) Normal(m;s 2) q = (m;s 2) Y = mX + b q = (m;b) In the real world often you don’t know the “true” parameters, but you get to observe data.
    [Show full text]
  • Volatility Modeling Using the Student's T Distribution
    Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics Aris Spanos, Chair Richard Ashley Raman Kumar Anya McGuirk Dennis Yang August 29, 2003 Blacksburg, Virginia Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates Copyright 2003, Maria S. Heracleous Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous (ABSTRACT) Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of uni- variateandmultivariateGARCHtypemodels.Whiletheunivariatemodelshavebeenrelatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable param- eter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatil- ity literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data.
    [Show full text]
  • The Value at the Mode in Multivariate T Distributions: a Curiosity Or Not?
    The value at the mode in multivariate t distributions: a curiosity or not? Christophe Ley and Anouk Neven Universit´eLibre de Bruxelles, ECARES and D´epartement de Math´ematique,Campus Plaine, boulevard du Triomphe, CP210, B-1050, Brussels, Belgium Universit´edu Luxembourg, UR en math´ematiques,Campus Kirchberg, 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg, Grand-Duchy of Luxembourg e-mail: [email protected]; [email protected] Abstract: It is a well-known fact that multivariate Student t distributions converge to multivariate Gaussian distributions as the number of degrees of freedom ν tends to infinity, irrespective of the dimension k ≥ 1. In particular, the Student's value at the mode (that is, the normalizing ν+k Γ( 2 ) constant obtained by evaluating the density at the center) cν;k = k=2 ν converges towards (πν) Γ( 2 ) the Gaussian value at the mode c = 1 . In this note, we prove a curious fact: c tends k (2π)k=2 ν;k monotonically to ck for each k, but the monotonicity changes from increasing in dimension k = 1 to decreasing in dimensions k ≥ 3 whilst being constant in dimension k = 2. A brief discussion raises the question whether this a priori curious finding is a curiosity, in fine. AMS 2000 subject classifications: Primary 62E10; secondary 60E05. Keywords and phrases: Gamma function, Gaussian distribution, value at the mode, Student t distribution, tail weight. 1. Foreword. One of the first things we learn about Student t distributions is the fact that, when the degrees of freedom ν tend to infinity, we retrieve the Gaussian distribution, which has the lightest tails in the Student family of distributions.
    [Show full text]
  • Random Variables and Applications
    Random Variables and Applications OPRE 6301 Random Variables. As noted earlier, variability is omnipresent in the busi- ness world. To model variability probabilistically, we need the concept of a random variable. A random variable is a numerically valued variable which takes on different values with given probabilities. Examples: The return on an investment in a one-year period The price of an equity The number of customers entering a store The sales volume of a store on a particular day The turnover rate at your organization next year 1 Types of Random Variables. Discrete Random Variable: — one that takes on a countable number of possible values, e.g., total of roll of two dice: 2, 3, ..., 12 • number of desktops sold: 0, 1, ... • customer count: 0, 1, ... • Continuous Random Variable: — one that takes on an uncountable number of possible values, e.g., interest rate: 3.25%, 6.125%, ... • task completion time: a nonnegative value • price of a stock: a nonnegative value • Basic Concept: Integer or rational numbers are discrete, while real numbers are continuous. 2 Probability Distributions. “Randomness” of a random variable is described by a probability distribution. Informally, the probability distribution specifies the probability or likelihood for a random variable to assume a particular value. Formally, let X be a random variable and let x be a possible value of X. Then, we have two cases. Discrete: the probability mass function of X specifies P (x) P (X = x) for all possible values of x. ≡ Continuous: the probability density function of X is a function f(x) that is such that f(x) h P (x < · ≈ X x + h) for small positive h.
    [Show full text]
  • Statistics, Measures of Central Tendency I
    Statistics, Measures of Central TendencyI We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom an experiment n times and record the outcome. This means we have X1;:::; Xn i.i.d. random variables, with probability distribution same as X . We want to use the outcome to infer what the parameters are. Mean The outcomes are x1;:::; xn. The Sample Mean is x1+···+xn x := n . Also sometimes called the average. The expected value of X , EX , is also called the mean of X . Often denoted by µ. Sometimes called population mean. Median The number so that half the values are below, half above. If the sample is of even size, you take the average of the middle terms. Mode The number that occurs most frequently. There could be several modes, or no mode. Dan Barbasch Math 1105 Chapter 9 Week of September 25 1 / 24 Statistics, Measures of Central TendencyII Example You have a coin for which you know that P(H) = p and P(T ) = 1 − p: You would like to estimate p. You toss it n times. You count the number of heads. The sample mean should be an estimate of p: EX = p, and E(X1 + ··· + Xn) = np: So X + ··· + X E 1 n = p: n Dan Barbasch Math 1105 Chapter 9 Week of September 25 2 / 24 Descriptive StatisticsI Frequency Distribution Divide into a number of equal disjoint intervals. For each interval count the number of elements in the sample occuring.
    [Show full text]