applied sciences Review Current Status of Single Particle Imaging with X-ray Lasers Zhibin Sun 1,2,3, Jiadong Fan 3, Haoyuan Li 2,4 and Huaidong Jiang 3,* 1 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
[email protected] 2 Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
[email protected] 3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
[email protected] 4 Department of Physics, Stanford University, Stanford, CA 94305, USA * Correspondence:
[email protected] Received: 20 December 2017; Accepted: 10 January 2018; Published: 22 January 2018 Abstract: The advent of ultrafast X-ray free-electron lasers (XFELs) opens the tantalizing possibility of the atomic-resolution imaging of reproducible objects such as viruses, nanoparticles, single molecules, clusters, and perhaps biological cells, achieving a resolution for single particle imaging better than a few tens of nanometers. Improving upon this is a significant challenge which has been the focus of a global single particle imaging (SPI) initiative launched in December 2014 at the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, USA. A roadmap was outlined, and significant multi-disciplinary effort has since been devoted to work on the technical challenges of SPI such as radiation damage, beam characterization, beamline instrumentation and optics, sample preparation and delivery and algorithm development at multiple institutions involved in the SPI initiative. Currently, the SPI initiative has achieved 3D imaging of rice dwarf virus (RDV) and coliphage PR772 viruses at ~10 nm resolution by using soft X-ray FEL pulses at the Atomic Molecular and Optical (AMO) instrument of LCLS.