IJF Layout 55-1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Progress in Mediterranean Bioinvasions Two Years After the Suez Canal Enlargement
ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(2): 347 - 358, 2017 Progress in Mediterranean bioinvasions two years after the Suez Canal enlargement Argyro ZENETOS Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19003 Anavissos, Greece Corresponding author, e-mail: [email protected] The possibility that the recent expansion of the Suez Canal could trigger an entirely new twenty first century wave of invasions was investigated. Results showed that only 19 new alien species were detected after August 2015 (date of the last Suez Canal enlargement). Five of the newcomers have already established viable populations. Between August 2015 and August 2017 approximately 9,5 new species (mostly fish) entered the Mediterranean annually, 7 of them via the Suez Canal unaided. The next most important pathway is Transport - Stowaway: Shipping, while intentional releases from aquaria appear to play an impor- tant role. Our results confirm previous findings on the decreasing rate of introductions, which is not affected by the recent expansion of the Suez Canal. Conclusively, the rate of bio invasions via the Suez Canal has not “doubled” as anticipated but rather decreased in relation to previous years. Key words: Alien species, Suez Canal, Internet screening INTRODUCTION However, a recent study revealed that from 2011 to 2016, the annual rate of MAS introductions It has been well documented that the Suez in the Mediterranean has decreased regardless Canal is the main pathway of Marine Alien of the pathway (ZENETOS et al., 2017). GALIL et al. species (MAS) introductions into the Mediterra- (2015) claimed that the recent expansion of the nean Sea (POR, 1978; GALIL, 2006; RILOV & GALIL, Suez Canal could trigger an entirely new twenty 2009; ZENETOS et al., 2012; KATSANEVAKIS et al., first century wave of invasions through a next- 2013; NUNES et al., 2013). -
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Frontiers in Zoology Biomed Central
Frontiers in Zoology BioMed Central Research Open Access Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life Katharina Händeler*1, Yvonne P Grzymbowski1, Patrick J Krug2 and Heike Wägele1 Address: 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany and 2Department of Biological Sciences, California State University, Los Angeles, California, 90032-8201, USA Email: Katharina Händeler* - [email protected]; Yvonne P Grzymbowski - [email protected]; Patrick J Krug - [email protected]; Heike Wägele - [email protected] * Corresponding author Published: 1 December 2009 Received: 26 June 2009 Accepted: 1 December 2009 Frontiers in Zoology 2009, 6:28 doi:10.1186/1742-9994-6-28 This article is available from: http://www.frontiersinzoology.com/content/6/1/28 © 2009 Händeler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa. -
Australian Nudibranch News
nudibranchNEWS 2:5 Feature Creature Editors Notes... ? Discodoris. sp (green) The Australasian part of the newsletters title has been dropped. With so much international input the old name was becoming limiting and confusing. Some small layout changes have also been made. As fig.1 always, our comments would be appreciated. Richard Willan and Julie Marshalls eagerly awaited new book, Nudibranchs of Heron Island,The Great Barrier Reef has been released. A review will appear in an upcoming issue. The book contains 280 pages with 35 colour plates (8 images to a plate). 262 species are covered in detail. Price is reportedly $60US. What is in a name? On page 19 of this issue is an article on Phidiana (or is it Caloria) indica. This is one of the many cases where differing views prevail. The name Phidiana has been used in the article as it is the most current name published, Rudman, 1999 fig.1. The colour is inaccurate in (The Sea Slug Forum). It is noted that reference is made to the this image. There is so much red. Fig. Australian Museums site by current researchers. That protocol is 2 is more accurate. continued here. An undescribed species first Neil Miller of Diveoz Web Services and I have merged our sighted (by myself) at Catherine Hill sites to offer a fast, clean and hopefully more user friendly resource. Bay, south of Newcastle, NSW, Australia The nudibranch site is now at http://www. diveoz.com.au. Links and again at Port Stephens, NSW. from the old pages will redirect visitors to the new site to avoid any Maximum length appears to be 50 inconvenience. -
Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts
ORIGINAL RESEARCH published: 12 July 2016 doi: 10.3389/fmicb.2016.01042 Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts Lars Schreiber 1*, Kasper U. Kjeldsen 1, Peter Funch 2, Jeppe Jensen 1, Matthias Obst 3, Susanna López-Legentil 4 and Andreas Schramm 1 1 Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University, Aarhus, Denmark, 2 Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark, 3 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 4 Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington NC, USA Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25–100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence Edited by: in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains Joerg Graf, of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and University of Connecticut, USA characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a Reviewed by: Silvia Bulgheresi, mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. -
113-125 on Three Rare Doridiform Nudibranch
J. mar. biod . Ass. India, 1974, 16 (1): 113-125 ON THREE RARE DORIDIFORM NUDIBRANCH MOLLUSCS FROM KAVARATTI LAGOON, LACCADIVE ISLANDS K. ViRABHADRA RAO, P. SiVADAS* AND L. KRISHNA KUMARY National Institute of Oceanography, Panaji, Goa. ABSTRACT. The paper deals with Asteronotus caespitosus (van Hasselt) under the family Dori- didae and Phyllidia (Phyllidia) varicosa Lamarck and Phyllidia (Phyllidiella) zeylanica Kelaart under the family Phyllidiidae. All the three are new records for the Laccadive group of Islands. The first two have not beeii recorded even from the coasts of the main land of India. The descriptions of external morphology and colouration of all the three forms are based on fresh living material examined in the field. Their geographical distribu tion and some aspects of the internal anatomy arealso dealt with. In the Indo-Pacific region, there seems to be only one species under the genus Asteronotus Ehrenberg, namely A. caespitosus. A. mabillaBeigh, A. bertranaBergh, A. exanthemata (Kelaart), A. crescentica (CoUingwood), A. hemprichi (Ehrenberg), and A.fuscus O'Donoghue are also shown to be synonymous with A. caespitosus. P. (P) zeylanica is an extremely rare and little known species which has been recorded only for the third time in the past 113 years after its first description by Kelaart in 1859. INTRODUCTION THE Laccadive group of Islands forms a distinct geographical entity with characte* ristic faimal assemblages of their own, the study of which because of their intrinsic interest has received much attention of the Indian National Science Academy under a Scientific project' Investigations of the Arabian Sea Islands'. A large number Of molluscan species inhabiting Kavaratti and nearby Islands have been collected under the project. -
Marine Invertebrates of Digha Coast and Some Recomendations on Their Conservation
Rec. zool. Surv. India: 101 (Part 3-4) : 1-23, 2003 MARINE INVERTEBRATES OF DIGHA COAST AND SOME RECOMENDATIONS ON THEIR CONSERVATION RAMAKRISHNA, J A YDIP SARKAR * AND SHANKAR T ALUKDAR Zoological Sruvey of India, M-Block, New Alipore, Kolkata 700 053, India INTRODUCTION The ftrst study on marine fauna of Digha coast is known from the work of Bharati Goswami during 1975-87 (Bharati Goswami, 1992). Other workers, viz., Bairagi, Bhadra, Mukhopadhyaya, Misra, Reddy (1995); Subba Rao et. al., (1992, 1995); Talukdar et. al., (1996); Ramakrishna and Sarkar (1998); Sastry (1995, 1998) and Mitra et. al., (2002) also reported some marine invertebrates under different faunal groups from Hughly-Matla estuary, including Digha. But uptil recently there is no comprehensive updated list of marine invertebrates from Digha coast and adjoining areas. With the establishment of Marine Aquarium and Research Centre, Digha in the year 1990, opportunity was launched for undertaking an extensive exploration and studying seasonal changes that have been taken place on the coastal biodiversity in this area. Accordingly, the authors of the present work, started collecting the detailed faunal infonnation from Digha and adjoining coastal areas [Fig. 2 and 3]. During the study, it has transpired that exploitation of coastal resources has very abruptly increased in recent years. Several new fishing gears are employed, a number of new marine organisms are recognized as commercial fish and non fish resources. Also, the number of trawlers has increased to a large extent. The present paper based on the observations from 1990 to 2000 (including the current records upto January, 2002), is an uptodate database for the available species of marine invertebrates from this area. -
Phidiana Lynceus Berghia Coerulescens Doto Koenneckeri
Cuthona abronia Cuthona divae Austraeolis stearnsi Flabellina exoptata Flabellina fusca Calma glaucoides Hermosita hakunamatata Learchis poica Anteaeolidiella oliviae Aeolidiopsis ransoni Phidiana militaris Baeolidia moebii Facelina annulicornis Protaeolidiella juliae Moridilla brockii Noumeaella isa Cerberilla sp. 3 Cerberilla bernadettae Aeolidia sp. A Aeolidia sp. B Baeolidia sp. A Baeolidia sp. B Cerberilla sp. A Cerberilla sp. B Cerberilla sp. C Facelina sp. C Noumeaella sp. A Noumeaella sp. B Facelina sp. A Marionia blainvillea Aeolidia papillosa Hermissenda crassicornis Flabellina babai Dirona albolineata Doto sp. 15 Marionia sp. 10 Marionia sp. 5 Tritonia sp. 4 Lomanotus sp. E Piseinotecus sp. Dendronotus regius Favorinus elenalexiarum Janolus mirabilis Marionia levis Phyllodesmium horridum Tritonia pickensi Babakina indopacifica Marionia sp. B Godiva banyulensis Caloria elegans Favorinus brachialis Flabellina baetica 1 Facelinidae sp. A Godiva quadricolor 0.99 Limenandra fusiformis Limenandra sp. C 0.71 Limenandra sp. B 0.91 Limenandra sp. A Baeolidia nodosa 0.99 Crosslandia daedali Scyllaea pelagica Notobryon panamica Notobryon thompsoni 0.98 Notobryon sp. B Notobryon sp. C Notobryon sp. D Notobryon wardi 0.97 Tritonia sp. 3 Marionia arborescens 0.96 Hancockia cf. uncinata Hancockia californica 0.94 Spurilla chromosoma Pteraeolidia ianthina 0.92 Noumeaella sp. 3 Noumeaella rehderi 0.92 Nanuca sebastiani 0.97 Dondice occidentalis Dondice parguerensis 0.92 Pruvotfolia longicirrha Pruvotfolia pselliotes 0.88 Marionia sp. 14 Tritonia sp. G 0.87 Bonisa nakaza 0.87 Janolus sp. 2 0.82 Janolus sp. 1 Janolus sp. 7 Armina sp. 3 0.83 Armina neapolitana 0.58 Armina sp. 9 0.78 Dermatobranchus sp. 16 0.52 Dermatobranchus sp. 21 0.86 Dermatobranchus sp. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Table of Contents
ALL INDIA CO-ORDINATED PROJECT ON TAXONOMY OF MOLLUSCA ANNUAL REPORT (December 2016 – May 2018) GUJARAT STATE BOMBAY NATURAL HISTORY SOCIETY Dr. Deepak Apte Director Dr. Dishant Parasharya Dr. Bhavik Patel Scientist – B Scientist – B All India Coordinated Project on Taxonomy – Mollusca , Gujarat State Acknowledgements We are thankful to the Department of Forest and Environment, Government of Gujarat, Mr. G. K. Sinha, IFS HoFF and PCCF (Wildlife) for his guidance and cooperation in the work. We are thankful to then CCF Marine National Park and Sanctuary, Mr. Shyamal Tikader IFS, Mr. S. K. Mehta IFS and their team for the generous support, We take this opportunity to thank the entire team of Marine National Park and Sanctuary. We are thankful to all the colleagues of BNHS who directly or indirectly helped us in our work. We specially thank our field assistant, Rajesh Parmar who helped us in the field work. All India Coordinated Project on Taxonomy – Mollusca , Gujarat State 1. Introduction Gujarat has a long coastline of about 1650 km, which is mainly due to the presence of two gulfs viz. the Gulf of Khambhat (GoKh) and Gulf of Kachchh (GoK). The coastline has diverse habitats such as rocky, sandy, mangroves, coral reefs etc. The southern shore of the GoK in the western India, notified as Marine National Park and Sanctuary (MNP & S), harbours most of these major habitats. The reef areas of the GoK are rich in flora and fauna; Narara, Dwarka, Poshitra, Shivrajpur, Paga, Boria, Chank and Okha are some of these pristine areas of the GoK and its surrounding environs. -
Trivialnamen Für Mollusken Des Meeres Und Brackwassers in Deutschland (Polyplacophora, Gastropoda, Bivalvia, Scaphopoda Et Cephalopoda)
> Mollusca 27 (1) 2009 3 3 – 32 © Museum für Tierkunde Dresden, ISSN 1864-5127, 15.04.2009 Trivialnamen für Mollusken des Meeres und Brackwassers in Deutschland (Polyplacophora, Gastropoda, Bivalvia, Scaphopoda et Cephalopoda) FRITZ GOSSELCK 1, ALEXANDER DARR 1, JÜRGEN H. JUNGBLUTH 2 & MICHAEL L. ZETTLER 3 1 Institut für Angewandte Ökologie GmbH, Alte Dorfstraße 11, D-18184 Broderstorf, Germany [email protected] 2 In der Aue 30e, D-69118 Schlierbach, Germany PROJEKTGRUPPE MOLLUSKENKARTIERUNG © [email protected] 3 Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, D-18119 Rostock, Germany [email protected] Received on July 11, 2008, accepted on February 10, 2009. Published online at www.mollusca-journal.de > Abstract German common names for marine and brackish water molluscs. – A list of common names of German marine and brackish water molluscs was compiled for the German coastal waters and the exclusive economic zone (EEZ) of the North and Baltic Seas. Main aim of this compilation is to give interested non-professionals better access to and understanding of sea shells and squids. As often long-lived and relatively stationary species, molluscs can provide a key function as water quality indicators. The taxonomic classifi cation was based on the Mollusca databases CLEMAM and ERMS (MARBEF). The list includes 309 species. > Kurzfassung Eine Liste deutscher Namen der marinen und Brackwasser-Mollusken der deutschen Küstengewässer und der Ausschließlichen Wirtschaftszone (AWZ) der Nord- und Ostsee wurde erstellt. Ziel der Zusammenstellung ist es, mit den Trivialnamen dem interessierten Laien die marinen Schnecken, Muscheln und Tintenfi sche etwas näher zu bringen. -
Food and Feeding Biology of Kalinga Ornata (Alder & Hancock, 1864) from Pazhayar, Southeast Coast of India
D. Selvam et al., IJSIT, 2016, 5(5), 439-446 FOOD AND FEEDING BIOLOGY OF KALINGA ORNATA (ALDER & HANCOCK, 1864) FROM PAZHAYAR, SOUTHEAST COAST OF INDIA * D. Selvam , K. Gunasekaran and A. Saravanakumar Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502 ABSTRACT Seven species of sea slugs Kalinga ornata, Armina maculata, A. tigrina, A. babai, Bulla ampulla, Hydatina zonata, and Philine orientalis were observed at Pazhayar landing centre from Jan. 2014 to Dec. 2014. A total of 187 individuals were collected and measured their length-weight which was ranged between 45 to 136 mm and 75 to 80.44 g. Among them Kalinga ornata was highly dominant and hence, their food and feeding behavior, compositions of their gut content were studied. The morphology of K. ornata were observed under stereo-microscope and the overall percentage of food composition preyed is 30 % of echinoderms skeleton, 22 % of gastropods juveniles, 17 % of bivalve juveniles, 12 % of molluscan broken shells, 10 % of sand and muddy particles and 9 % of foraminiferans. Key words: Gut contents, foraminifera, Kalinga ornata, sea slugs 439 IJSIT (www.ijsit.com), Volume 5, Issue 5, September-October 2016 D. Selvam et al., IJSIT, 2016, 5(5), 439-446 INTRODUCTION Kalinga ornata is highly carnivores species and marine shell-less molluscan group, herphrodite in nature, dorid like nudibranchs (naked gills) and fascinating with variety of color and body forms, commonly called “Kalinga”. This specimen is classified by one individual genus and species, which belong to the family Polyceridae and subfamily Kalinginae. They are nocturnal animal and their original anatomy was first described by Alder and Hancock (1864) from Coromandel coast, but still scanty information is available on their biology and gut content (Sethi and Pttnaik, 2012; Shrinivaasu et al.