Algorithms for Large-Scale Nonlinearly Constrained Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms for Large-Scale Nonlinearly Constrained Optimization Algorithms for Large-Scale Nonlinearly Constrained Optimization Case for Support | Description of Research and Context Purpose The solution of large-scale nonlinear optimization|minimization or maximization| problems lies at the heart of scientific computation. Structures take up positions of minimal constrained potential energy, investors aim to maximize profit while controlling risk, public utilities run transmission networks to satisfy demand at least cost, and pharmaceutical companies desire minimal drug doses to target pathogens. All of these problems are large either because the mathematical model involves many parameters or because they are actually finite discretisations of some continuous problem for which the variables are functions. The purpose of this grant application is to support the design, analysis and development of new algorithms for nonlinear optimization that are particularly aimed at the large-scale case. A post-doctoral researcher will be employed to perform a significant share of the design, analysis and implementation. The resulting software will be freely available, for research purposes, as part of the GALAHAD library [21]. Background The design of iterative algorithms for constrained nonlinear optimization has been a vibrant research area for many years. The earliest methods were based on simple (penalty or barrier) transformations of the constrained problem to create one or more artificial unconstrained ones. This has particular advantages when the number of variables is large since significant advances in large-scale unconstrained optimization, particularly in the use of truncated conjugate-gradient methods, were made during the 1980s. The first successful methods were arguably augmented Lagrangian methods, also based on sequential unconstrained minimization, which aimed to overcome the perceived ill-conditioning in the earlier approaches. Certainly both MINOS [27] and LANCELOT [11] are augmented-Lagrangian based packages. Fully-fledged constrained optimization approaches date back to the development of sequential linear (SLP) and quadratic programming (SQP) methods, and have been applied to small-scale problems since the late 1960s. These were the first methods in which separate approximations to the objective function and constraints were treated explicitly, and it has been argued that in its basic form SQP is simply Newton's method for constrained optimization. The names SLP/SQP arise since a sequence of linear (LP) or quadratic (QP) programs|specifically the minimization of a first or second-order Taylor series approximation to the Lagrangian function subject to linearisations of the constraints|are solved. In practice, SQP methods have proved to be remarkably hard to generalise for the truly large-scale case, and to date only the SNOPT [18] and FilterSQP [15] packages are based on the SQP paradigm. The main issue is that in the small-scale case, the Hessian of the Lagrangian is approximated by a so-called positive-definite quasi-Newton formula, the resulting QP is thus strictly convex, and has but one minimizer. By contrast, in the large-scale case, it is often too expensive to maintain a positive-definite Hessian approximation, but the alternative of using exact second derivatives causes difficulties since then the QP is often non-convex and may have undesirable local minimizers. The bulk of the development in constrained optimization over the past 15 years has been for interior- point methods. In these an alternative Newton model based on perturbed optimality conditions is used to compute improved iterates within the interior of the feasible region, while at the same time reducing the perturbation to zero to encourage convergence. Crucially, there is coherence between the way the step is chosen and the logarithmic barrier function as a means to assess whether to accept or retract the step. The successful packages KNITRO [8], IPOPT [29] and LOQO [1] are all interior-point based. However, when it comes to equality constraints (which have no interiors), the strategies used appear somewhat ad hoc. Programme and methodology In this proposal, we intend to revisit the SQP approach, particularly, but not exclusively, to derive new 1 convergence strategies and to investigate better ways of dealing with equality constraints. We will consider three approaches: (i) an SQP method in which extra constraints are imposed on the subproblem to ensure that the step gives local improvement, (ii) a regularized SLP-EQP method in which the choice of which constraints are imposed when finding the step is delegated to a subsidiary but simpler problem and (iii) an approach where reduction of the constraint violation and objective function are controlled separately without using a nonlinear programming “filter”. Our aim will be, in each case, to design and analyse suitable algorithms, and to produce high-quality, publicly available software as part of the GALAHAD library. We now give technical details of the three approaches we will consider. Approach 1. Given an estimate xk of the solution to the continuous optimization problem minimize f(x) subject to c(x) ≥ 0; x2IRn the basic SQP approach determines a correction sk by solving the quadratic program T 1 T minimize s gk + 2 s Hks subject to Jks + ck ≥ 0; (1) s2IRn where gk = rxf(xk), ck = c(xk), Jk = rxc(xk), and Hk is a symmetric approximation to the Hessian of the Lagrangian function|for simplicity we only refer to the inequality problem here, but in practice equality constraints will result in linearised equalities in the QP subproblem. Both line-search and trust- region globalisations are possible; in the former xk+1 = xk + αksk for some suitable αk 2 (0; 1], while in the latter an extra constraint ksk1 ≤ ∆k will be imposed on the QP subproblem for some suitably small radius ∆k and xk+1 = xk + sk. Traditionally, globalisation is achieved by requiring that xk+1 significantly reduces an appropriate penalty/merit function such as φ(x; σ) = f(x) + σv(x), where v(x) = k min(0; c(x))k and σ is a sufficiently positive parameter [28]. More recently, “filter” methods [14, 15] achieve the same effect by insisting that the pair (f(xk+1); v(xk+1)) is not dominated in a Pareto sense by certain previous pairs (f(xi); v(xi)), i ≤ k. The basic SQP method has two significant advantages, namely that the QP subproblem ultimately predicts which of the inequality constraints are active (and thus those which may be discarded), and that, once this happens, the method converges very rapidly if Hk is suitably chosen [5, 23]. However, it also suffers from a number of defects. Firstly, there may be no feasible point for the QP subproblem, especially if a trust-region with small radius is imposed. This may be overcome by replacing the QP by the related penalty-QP problem T 1 T minimize s gk + 2 s Hks + σk min(0; Jks + ck)k; s2IRn or by entering a \restoration phase" whose aim is simply to move closer to feasibility by discarding the objective. Secondly, the merit function or filter may reject the full SQP step, and thus destroy rapid convergence [26]. This may be avoided at additional cost by adding a \second-order" correction to the SQP step [13]. Finally, and most seriously, when Hk is indefinite, the QP may have many local minimizers, some of which are inappropriate for the merit function or filter; finding the global minimizer is simply too hard, and indeed the global minimizer may itself be inappropriate [22]. One way of avoiding this latter difficulty is to impose an extra constraint on the subproblem (1) to ensure that the step is a descent direction for the merit function. For example, if ei denotes the ith column of the identity matrix and Vk are the indices of constraints that are violated or active at xk, and we consider the subproblem T 1 T T T minimize s gk + 2 s Hks subject to Jks + ck ≥ 0 and (gk + σ X Jk ei) s ≤ −!k; (2) s2IRn i2Vk for some appropriately small !k > 0, any solution of the subproblem will be a descent direction for φ(x; σ) at xk. Of course, there is no a priori guarantee that the constraint set for (2) is consistent, and it may 2 instead be better to consider the penalty-QP version of the subproblem T 1 T T T minimize s gk + 2 s Hks + σk min(0; Jks + ck)k subject to (gk + σ X Jk ei) s ≤ −!k (3) s2IRn i2Vk for which there will be a solution. It is even possible to impose a trust-region upon (2) or (3), and in the latter case the additional constraint set will remain feasible provided either the radius is sufficiently large or !k sufficiently small. Nevertheless, there remain a number of interesting issues. In particular, it is unclear what effects the additional constraint might have on the ultimate speed of convergence. The intention is to implement these ideas as part of GALAHAD, using the library's pre-existing QP solvers [10, 24, 25] as crucial sub-programs. This part of the research programme will be performed in conjunction with Professors Philippe Toint (Namur) and Dominique Orban (Montr´eal). Both have considerable experience in the field of large-scale nonlinear optimization, and have been part of the GALAHAD team since its inception. Collaboration will be, as always, primarily by email. Approach 2. Sequential linear programming approaches differ from their SQP counterparts (1) in that the simpler linear programming subproblem T minimize s gk subject to Jks + ck ≥ 0 and ksk1 ≤ ∆k (4) s2IRn is solved|the trust-region constraint is imposed to guarantee a finite solution. Although SLP methods are almost inevitably slowly convergent (and thus impractical), they share with SQP the ability to predict which constraints are ultimately active so long as the radius ∆k stays sufficiently large. This then naturally leads to combined SLP-EQP approaches in which the optimal active set Ak for (4) is simply used for prediction, and the step sk is actually chosen as the minimizer of the equality-constrained quadratic program (EQP) T 1 T minimize s gk + 2 s Hks subject to JAk s + cAk = 0; (5) s2IRn where the subscript Ak indicates the rows of Jk and ck indexed by Ak.
Recommended publications
  • Numerical Methods for Large-Scale Nonlinear Optimization
    Technical Report RAL-TR-2004-032 Numerical methods for large-scale nonlinear optimization N I M Gould D Orban Ph L Toint November 18, 2004 Council for the Central Laboratory of the Research Councils c Council for the Central Laboratory of the Research Councils Enquires about copyright, reproduction and requests for additional copies of this report should be addressed to: Library and Information Services CCLRC Rutherford Appleton Laboratory Chilton Didcot Oxfordshire OX11 0QX UK Tel: +44 (0)1235 445384 Fax: +44(0)1235 446403 Email: [email protected] CCLRC reports are available online at: http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225; ISSN 1358-6254 Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of information contained in any of their reports or in any communication about their tests or investigations. RAL-TR-2004-032 Numerical methods for large-scale nonlinear optimization Nicholas I. M. Gould1;2;3, Dominique Orban4;5;6 and Philippe L. Toint7;8;9 Abstract Recent developments in numerical methods for solving large differentiable nonlinear optimization problems are reviewed. State-of-the-art algorithms for solving unconstrained, bound-constrained, linearly-constrained and nonlinearly-constrained problems are discussed. As well as important conceptual advances and theoretical aspects, emphasis is also placed on more practical issues, such as software availability. 1 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, EU. Email: [email protected] 2 Current reports available from \http://www.numerical.rl.ac.uk/reports/reports.html". 3 This work was supported in part by the EPSRC grants GR/R46641 and GR/S42170.
    [Show full text]
  • Institutional Repository - Research Portal Dépôt Institutionnel - Portail De La Recherche
    Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be THESIS / THÈSE DOCTOR OF SCIENCES Filter-trust-region methods for nonlinear optimization Author(s) - Auteur(s) : Sainvitu, Caroline Award date: 2007 Awarding institution: University of Namur Supervisor - Co-Supervisor / Promoteur - Co-Promoteur : Link to publication Publication date - Date de publication : Permanent link - Permalien : Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. BibliothèqueDownload date: Universitaire 23. Jun. 2020 Moretus Plantin FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX NAMUR FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUE Filter-Trust-Region Methods for Nonlinear Optimization Dissertation présentée par Caroline Sainvitu pour l'obtention du grade de Docteur en Sciences Composition du Jury: Nick GOULD Annick SARTENAER Jean-Jacques STRODIOT Philippe TOINT (Promoteur) Luís VICENTE 2007 c Presses universitaires de Namur & Caroline Sainvitu Rempart de la Vierge, 13 B-5000 Namur (Belgique) Toute reproduction d'un extrait quelconque de ce livre, hors des limites restrictives prévues par la loi, par quelque procédé que ce soit, et notamment par photocopie ou scanner, est strictement interdite pour tous pays.
    [Show full text]
  • CME 338 Large-Scale Numerical Optimization Notes 2
    Stanford University, ICME CME 338 Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2019 Notes 2: Overview of Optimization Software 1 Optimization problems We study optimization problems involving linear and nonlinear constraints: NP minimize φ(x) n x2R 0 x 1 subject to ` ≤ @ Ax A ≤ u; c(x) where φ(x) is a linear or nonlinear objective function, A is a sparse matrix, c(x) is a vector of nonlinear constraint functions ci(x), and ` and u are vectors of lower and upper bounds. We assume the functions φ(x) and ci(x) are smooth: they are continuous and have continuous first derivatives (gradients). Sometimes gradients are not available (or too expensive) and we use finite difference approximations. Sometimes we need second derivatives. We study algorithms that find a local optimum for problem NP. Some examples follow. If there are many local optima, the starting point is important. x LP Linear Programming min cTx subject to ` ≤ ≤ u Ax MINOS, SNOPT, SQOPT LSSOL, QPOPT, NPSOL (dense) CPLEX, Gurobi, LOQO, HOPDM, MOSEK, XPRESS CLP, lp solve, SoPlex (open source solvers [7, 34, 57]) x QP Quadratic Programming min cTx + 1 xTHx subject to ` ≤ ≤ u 2 Ax MINOS, SQOPT, SNOPT, QPBLUR LSSOL (H = BTB, least squares), QPOPT (H indefinite) CLP, CPLEX, Gurobi, LANCELOT, LOQO, MOSEK BC Bound Constraints min φ(x) subject to ` ≤ x ≤ u MINOS, SNOPT LANCELOT, L-BFGS-B x LC Linear Constraints min φ(x) subject to ` ≤ ≤ u Ax MINOS, SNOPT, NPSOL 0 x 1 NC Nonlinear Constraints min φ(x) subject to ` ≤ @ Ax A ≤ u MINOS, SNOPT, NPSOL c(x) CONOPT, LANCELOT Filter, KNITRO, LOQO (second derivatives) IPOPT (open source solver [30]) Algorithms for finding local optima are used to construct algorithms for more complex optimization problems: stochastic, nonsmooth, global, mixed integer.
    [Show full text]
  • Optimization: Applications, Algorithms, and Computation
    Optimization: Applications, Algorithms, and Computation 24 Lectures on Nonlinear Optimization and Beyond Sven Leyffer (with help from Pietro Belotti, Christian Kirches, Jeff Linderoth, Jim Luedtke, and Ashutosh Mahajan) August 30, 2016 To my wife Gwen my parents Inge and Werner; and my teacher and mentor Roger. This manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”) under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. ii Contents I Introduction, Applications, and Modeling1 1 Introduction to Optimization3 1.1 Objective Function and Constraints...............................3 1.2 Classification of Optimization Problems............................4 1.2.1 Classification by Constraint Type...........................4 1.2.2 Classification by Variable Type............................5 1.2.3 Classification by Functional Forms..........................6 1.3 A First Optimization Example.................................6 1.4 Course Outline.........................................7 1.5 Exercises............................................7 2 Applications of Optimization9 2.1 Power-System Engineering: Electrical Transmission Planning................9 2.1.1 Transmission Planning Formulation.......................... 10 2.2 Other Power Systems Applications............................... 11 2.2.1 The Power-Flow Equations and Network Expansion................. 11 2.2.2 Blackout Prevention in National Power Grid...................... 12 2.2.3 Optimal Unit Commitment for Power-Grid.....................
    [Show full text]
  • GAMS/LGO Nonlinear Solver Suite: Key Features, Usage, and Numerical Performance
    GAMS/LGO Nonlinear Solver Suite: Key Features, Usage, and Numerical Performance JÁNOS D. PINTÉR Pintér Consulting Services, Inc. 129 Glenforest Drive, Halifax, NS, Canada B3M 1J2 [email protected] www.dal.ca/~jdpinter Submitted for publication: November 2003 Abstract. The LGO solver system integrates a suite of efficient global and local scope optimization strategies. LGO can handle complex nonlinear models under ‘minimal’ (continuity) assumptions. The LGO implementation linked to the GAMS modeling environment has several new features, and improved overall functionality. In this article we review the solver options and the usage of GAMS/LGO. We also present reproducible numerical test results, to illustrate the performance of the different LGO solver algorithms on a widely used global optimization test model set available in GAMS. Key words: Nonlinear (convex and global) optimization; GAMS modeling system; LGO solver suite; GAMS/LGO usage and performance analysis. 1 Introduction Nonlinear optimization has been of interest, arguably, at least since the beginnings of mathematical programming, and the subject attracts increasing attention. Theoretical advances and progress in computer hardware/software technology enabled the development of sophisticated nonlinear optimization software implementations. Among the currently available professional level software products, one can mention, e.g. LANCELOT (Conn, Gould, and Toint, 1992) that implements an augmented Lagrangian based solution approach. Sequential quadratic programming methods are implemented – and/or are in the state of ongoing development – in EASY-FIT (Schittkowski, 2002), filterSQP (Fletcher and Leyffer, 1998, 2002), GALAHAD (Gould, Orban, and Toint, 2002), and SNOPT (Gill, Murray, and Saunders, 2003). Another notable solver class is based on the generalized reduced gradient approach, implemented in MINOS (Murtagh and Saunders, 1995; this system includes also other solvers), LSGRG (consult e.g., Lasdon and Smith, 1992; or Edgar, Himmelblau, and Lasdon, 2001), and CONOPT (Drud, 1996).
    [Show full text]
  • 1. Introduction
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 13{09 GLOBALLY CONVERGENT DC TRUST-REGION METHODS LE THI HOAI AN, HUYNH VAN NGAI, PHAM DINH TAO, A. I. F. VAZ AND L. N. VICENTE Abstract: In this paper, we investigate the use of DC (Difference of Convex func- tions) models and algorithms in the solution of nonlinear optimization problems by trust-region methods. We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent for first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, requires a minimum from the solution of the trust-region subproblems for problems where projecting onto the feasible region is computationally affordable. In fact, only one projection onto the feasible region is required in the computation of the trust-region step which seems in general less expensive than the calculation of the generalized Cauchy point. The numerical efficiency and robustness of the proposed new scheme when ap- plied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems. Keywords: Trust-region methods, DC algorithm, global convergence, bound con- straints. AMS Subject Classification (2010): 90C30, 90C26. 1. Introduction Consider the constrained nonlinear programming problem min f(x) subject to x 2 C; (1) where C ⊆ IR n is a nonempty closed convex set and f : IR n ! IR is a twice continuously differentiable function.
    [Show full text]
  • Active-Set Methods for Quadratic Programming
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Active-set methods for quadratic programming Permalink https://escholarship.org/uc/item/2sp3173p Author Wong, Elizabeth Lai Sum Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Active-Set Methods for Quadratic Programming A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Elizabeth Wong Committee in charge: Professor Philip E. Gill, Chair Professor Henry D. I. Abarbanel Professor Randolph E. Bank Professor Michael J. Holst Professor Alison L. Marsden 2011 Copyright Elizabeth Wong, 2011 All rights reserved. The dissertation of Elizabeth Wong is approved, and it is accept- able in quality and form for publication on microfilm and electron- ically: Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page.......................................... iii Table of Contents........................................ iv List of Figures.......................................... vi List of Tables........................................... vii List of Algorithms........................................ viii Acknowledgements........................................ ix Vita and Publications......................................x Abstract of the Dissertation................................... xi 1 Introduction..........................................1 1.1 Overview........................................1
    [Show full text]
  • A Vector-Free Implementation of the GLTR Method for Iterative Solution of the Trust Region Problem
    November 7, 2017 Optimization Methods & Software tr To appear in Optimization Methods & Software Vol. 00, No. 00, Month 20XX, 1{27 trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem F. Lendersa∗ and C. Kirchesb and A. Potschkaa aInterdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany. bInstitut f¨urMathematische Optimierung, Technische Universit¨atCarolo-Wilhelmina zu Braunschweig, Germany. (Received 00 Month 20XX; final version received 00 Month 20XX) We describe trlib, a library that implements a variant of Gould's Generalized Lanczos method (Gould et al. in SIAM J. Opt. 9(2), 504{525, 1999) for solving the trust region problem. Our implementation has several distinct features that set it apart from preexisting ones. We implement both conjugate gradient (CG) and Lanczos iterations for assembly of Krylov subspaces. A vector- and matrix-free reverse communication interface allows the use of most general data structures, such as those arising after discretization of function space problems. The hard case of the trust region problem frequently arises in sequential methods for nonlinear optimization. In this implementation, we made an effort to fully address the hard case in an exact way by considering all invariant Krylov subspaces. We investigate the numerical performance of trlib on the full subset of unconstrained problems of the CUTEst benchmark set. In addition to this, interfacing the PDE discretization toolkit FEniCS with trlib using the vector-free reverse communication interface is demon- strated for a family of PDE-constrained control trust region problems adapted from the OPTPDE collection. Keywords: trust-region subproblem, iterative method, Krylov subspace method, PDE constrained optimization AMS Subject Classification: 35Q90, 65K05, 90C20, 90C30, 97N90 1.
    [Show full text]
  • Polytechnique Montréal Summer Research Internship
    POLYTECHNIQUE MONTRÉAL 2019 SUMMER RESEARCH INTERNSHIP Founded in 1873, Polytechnique Montréal is a leading Canadian university for the scope and intensity of its engineering research and industrial partnerships. It is ranked #1 for the number of Canada Research Chairs in Engineering, the most prestigious research funding in the country, and is also first in Québec for the size of its student body and the scope of its research activities. Polytechnique Montréal has laboratories at the cutting edge of technology thanks to funding of nearly a quarter of a billion dollars from the Canada Foundation for Innovation over the past 10 years. In 2017, Montreal ranked 1st for best student cities! Come and experience the pleasures of a fantastic summer in Québec where there is no time to be bothered with all the festivals! Research Internship Program Required Documents for Application A research internship is a research activity that is an integral part of a (in French or in English) visiting student’s academic program at the home institution. Each year, ■ Application Form; Polytechnique’s research units welcome more than 250 students from ■ Letter of motivation including the following information (if you have other universities wishing to put into practice the technical and scientific selected 2 research projects, provide a letter of motivation for each knowledge acquired in their studies. The research conducted is supervised project): by a professor of Polytechnique and is always related to needs expressed • explanations of your interest in working in the selected project by society or companies, and can be made in laboratories or in situ.
    [Show full text]
  • Numerical Analysis Group Progress Report January 2002 - December 2003
    Technical Report RAL-TR-2004-016 Numerical Analysis Group Progress Report January 2002 - December 2003 Iain S. Duff (Editor) April 30, 2004 Council for the Central Laboratory of the Research Councils c Council for the Central Laboratory of the Research Councils Enquires about copyright, reproduction and requests for additional copies of this report should be addressed to: Library and Information Services CCLRC Rutherford Appleton Laboratory Chilton Didcot Oxfordshire OX11 0QX UK Tel: +44 (0)1235 445384 Fax: +44(0)1235 446403 Email: [email protected] CCLRC reports are available online at: http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225; ISSN 1358-6254 Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of information contained in any of their reports or in any communication about their tests or investigations. RAL-TR-2004-016 Numerical Analysis Group Progress Report January 2002 - December 2003 Iain S. Duff (Editor) ABSTRACT We discuss the research activities of the Numerical Analysis Group in the Computational Science and Engineering Department at the Rutherford Appleton Laboratory of CLRC for the period January 2002 to December 2003. This work was supported by EPSRC grant R46441 until October 2003 and grant S42170 thereafter. Keywords: sparse matrices, direct methods, iterative methods, ordering techniques, stopping criteria, numerical linear algebra, large-scale optimization, Harwell Subroutine Library, HSL, GALAHAD, CUTEr AMS(MOS) subject classifications: 65F05, 65F50. Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports. This report is in the file duffRAL2004016.ps.gz. Report also available through URL http://www.numerical.rl.ac.uk/reports/reports.html.
    [Show full text]
  • Nonlinear Optimization with GAMS /LGO
    Nonlinear Optimization with GAMS /LGO JÁNOS D. PINTÉR Pintér Consulting Services, Inc. 129 Glenforest Drive, Halifax, NS, Canada B3M 1J2 [email protected] www.pinterconsulting.com Abstract. The Lipschitz Global Optimizer (LGO) software integrates global and local scope search methods, to handle nonlinear optimization models. This paper introduces the LGO implementation linked to the General Algebraic Modeling System (GAMS). First we review the key features and basic usage of the GAMS /LGO solver option, then present reproducible numerical results to illustrate its performance. Key words: Nonlinear (global and local) optimization; LGO solver suite; GAMS modeling system; GAMS /LGO solver option; numerical performance; illustrative applications. 1 Introduction Nonlinearity is a key characteristic of a vast range of objects, formations and processes in nature and in society. Consequently, nonlinear descriptive models are relevant in many areas of the sciences and engineering. For related discussions (targeted towards various professional audiences) consult for instance Aris (1999), Bracken and McCormick (1968), Dörner (1996), Gershenfeld (1999), Murray (1983), Lopez (2005), Steeb (2005), and Stojanovic (2003). Managing nonlinear systems leads to nonlinear optimization – a subject that has been of great practical interest, at least since the beginnings of mathematical programming. For technical discussions and further examples, see e.g. the topical chapters in Bartholomew-Biggs (2005), Chong and Zak (2001), Diwekar (2003), Edgar, Himmelblau, and Lasdon (2001), Pardalos and Resende (2002), Hillier and Lieberman (2005). Algorithmic advances and progress in computer technology have enabled the development of sophisticated nonlinear optimization software implementations. Among the currently available software products, one can mention, e.g. LANCELOT (Conn, Gould, and Toint, 1992) which implements an augmented Lagrangian based solution approach.
    [Show full text]
  • Active-Set Methods for Quadratic Programming
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Active-Set Methods for Quadratic Programming A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Elizabeth Wong Committee in charge: Professor Philip E. Gill, Chair Professor Henry D. I. Abarbanel Professor Randolph E. Bank Professor Michael J. Holst Professor Alison L. Marsden 2011 Copyright Elizabeth Wong, 2011 All rights reserved. The dissertation of Elizabeth Wong is approved, and it is accept- able in quality and form for publication on microfilm and electron- ically: Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page.......................................... iii Table of Contents........................................ iv List of Figures.......................................... vi List of Tables........................................... vii List of Algorithms........................................ viii Acknowledgements........................................ ix Vita and Publications......................................x Abstract of the Dissertation................................... xi 1 Introduction..........................................1 1.1 Overview........................................1 1.2 Contributions of this Thesis..............................3 1.3 Notation, Definitions, and Useful Results......................4 2 Quadratic Programming...................................7 2.1 Background.......................................7 2.2 Active-Set Methods for Mixed-Constraint Problems.................9
    [Show full text]