Evaluation of the Host Immune Response and Functional Recovery in Peripheral Nerve Autografts and Allografts T ⁎ Kelly Cristine Santos Roballo, Jared Bushman

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of the Host Immune Response and Functional Recovery in Peripheral Nerve Autografts and Allografts T ⁎ Kelly Cristine Santos Roballo, Jared Bushman Transplant Immunology 53 (2019) 61–71 Contents lists available at ScienceDirect Transplant Immunology journal homepage: www.elsevier.com/locate/trim Evaluation of the host immune response and functional recovery in peripheral nerve autografts and allografts T ⁎ Kelly Cristine Santos Roballo, Jared Bushman University of Wyoming, School of Pharmacy, Laramie, WY 82072, USA ARTICLE INFO ABSTRACT Keywords: Allogeneic peripheral nerve (PN) transplants are an effective bridge for stimulating regeneration of segmental Local immune system PN defects, but there are currently no detailed studies about the timeline and scope of the immunological Transplant response for PN allografting. In this study, the cellular immune response in PN allografts and autograft was Peripheral nerve studied during the acute and chronic phases of a 1.0 cm critical size defect in the rat sciatic nerve at 3, 7, 14, 28 and 98 days after grafting autologous or allogeneic nerves without any immunosuppressive treatment. The as- sessment was based on functional, histomorphometrical and immunohistochemical criteria. Results showed modestly better functional outcomes for autografts with coordinate and adaptive immune response represented by the presence of CD11c, CD3, CD4, NKp46 and CD8 cells at 3 days, CD45R positive cells and CD25 positive cells at seven and CD45R positive cells at 14 days which seems an adaptive immune response. In contrast, allograft in the early time points showed innate immune response instead of adaptive immune response until day 14, when there was some increase in cell-mediated immunity. In conclusion, in PN autografts the immune system is synchronic initiating with a more robust early innate response that more rapidly transitions to adaptive while for PN allografts the infiltration of immune cells is slower and more gradually progresses to a moderate adaptive response. 1. Introduction especially for larger defects [7]. Allogeneic PN grafts are as or more effective than autografts owing to that they can be mixed (motor and PNs are primarily composed of axons, Schwann cells (SCs), resident sensory axons) and more exactly matched for size and complex nerve immune cells and connective tissue [1]. When PNs are injured, the structures [8]. PN allografts, however, are rarely used clinically due to principal outcomes are loss and aberration of function, which can be the risks associated with immunosuppressive therapy used with allo- permanent and lead to lifelong disability [2]. In severe cases, termed geneic tissue grafts [9]. Improvements in immunosuppressive therapy neurotmesis by the Seddon and Sunderland classification, a nerve is that reduce or remove risks may enable more the widespread use of this completely bisected and functionality is immediately lost distal to the very effective PN regeneration strategy. injury [3,4]. Wallerian degeneration occurs distal to the injury as SCs While many reports show endpoint histology after PN allografts as dissociate from axons and the axons break down and are degraded compared to autografts, there are currently no detailed studies on the [5,6]. The result of Wallerian degeneration leaves the distal segment immunological response to PN allografts in the acute and chronic devoid of functional axons but primed for axons to reenter and for re- phases. In an effort to characterize the cellular processes occurring generation to occur [5,6]. Functional regeneration requires that sur- during the acute and chronic phases, we compared 1.0 cm critical size viving proximal axons extend into the distal PN segment and regenerate defects grafted with autologous or allogeneic PNs without im- to their target motor and sensory tissues [5,6]. munosuppressive therapy in a rat sciatic nerve model. Tissue was col- For segmental defects greater than ~0.5 cm, a bridging device must lected 3, 7, 14, 28 and 98 days (fourteen weeks) after grafting for his- be placed between the stumps in order for proximal axons to effectively tology and stained for markers of macrophages, dendritic, T cells, B regenerate into the distal segment. Autografted PNs, typically sensory cells, Natural Killers, Schwann cells and axons. Functional outcomes of segments of the sural or forelimb cutaneous nerves, are the gold stan- compound muscle action potentials (CMAPS) and muscle mass were dard for the bridging device. Biodegradable conduits and wraps are also also collected. The results indicate a substantial degree of regeneration clinically used but are fractionally effective compared to autografts, with allografts in the absence of immunosuppression, but shows ⁎ Corresponding author. E-mail address: [email protected] (J. Bushman). https://doi.org/10.1016/j.trim.2019.01.003 Received 27 August 2018; Received in revised form 24 January 2019; Accepted 25 January 2019 Available online 05 February 2019 0966-3274/ © 2019 Published by Elsevier B.V. K.C.S. Roballo, J. Bushman Transplant Immunology 53 (2019) 61–71 distinctions in the types, quantities and timing of immune cell in- 3.3. Electromyography (EMG) to measure CMAPs filtration between autograft and allograft. It is anticipated that these studies may be used as a basis of comparison for future studies assessing CMAPs were measured as described for Clements et al. 2016 study the efficacy of PN allografting. [10]. Briefly, rats were anesthetized with isoflurane 2.5% and Viking- Quest (Natus Neurology) was used to measure CMAPs of left peroneal and tibial muscles by surface stimulation near the heel, targets of the 2. Objective peroneal and sciatic branches of the sciatic nerve. The rats were posi- tioned in decubitus frontal on the working platform in order to measure The objective of these studies was to more fully characterize the compound muscle action potentials (CMAP) by EMG. The electrode was immunological response to allogeneic PN grafts in vivo. To do this, the placed in the posterior muscles group of the distal region after surgery cellular immune response to PN damage was studied during acute and and the sciatic nerve branches were stimulated at least 6 times with the chronic phases following the insertion of a 1.0 cm PN autograft or al- surface electrode. The reported findings are the average of the 3 largest lograft in the rat sciatic nerve. Assessment of immune cell response and CMAPs for each animal at each time point. The electrical stimulation nerve regeneration was based on functional, histomorphometrical and parameters were stimulus frequency 1 Hz, intensity lower than 24 mA. immunohistochemical criteria from tissue harvested on days 3, 7, 14, 28 and 98 after surgery. 3.4. Nerve collection and euthanasia AVWA Guidelines for the Euthanasia of Animals and NIH Guide for 3. Material and methods the Care and Use of Laboratory Animals were followed. Nerves were fixed in situ by exposing the nerves in isoflurane-anesthetized animals 3.1. Study design and bathing the nerve in Trumps fixative for 30 min. Nerves were then excised from the animals and placed in Trumps fixative. All experiments were conducted in accordance with the University of Wyoming Institutional Animal Care and Use Committee under ap- 3.5. Muscle wet weight analysis proved and current protocols. Female Lewis (LEW- RT1l) rats (Charles River Laboratories, Massachusetts, USA), 200–230 g, were submitted to For muscle wet weight analysis Wang et al. (2017)’s protocol was sciatic nerve transection surgery and were recipients of autograft (Auto) followed [11]. Briefly, Tibial anterior and gastrocnemius muscles were or allograft (Allo) transplantation. Donor PN tissue for allografts was dissected and isolated from right and left sides immediately after ani- harvested from deceased female Sprague–Dawley (SD—RT1b) rats mals were sacrificed, and weighed using a microbalance (Mettler To- (Charles River Laboratories, Massachusetts, USA), 200–230 g (Table 1). ledo, Columbus, OH, EUA). Affected side and unaffected side muscle For bulk cell infiltration studies, GFP expressing animals were obtained wet weight values were compared and analyzed for each time point. from Rat Resource and Research Center (RRRC) Columbia, MO, USA strain SD-Tg (UBC-EGFP) 2BalRrrc, common name SD-EGFP. GFP ex- 3.6. Sectioning and histology (immunohistolochemical analysis) pressing animals used in the study were heterozygotes from breeding SD-EGFP with SD animals obtained from Charles River. 3.6.1. Tissue processing Sciatic nerves were harvested, kept in Trump's fixative solution overnight and incubated in 20% sucrose solution for at least 16 h for 3.2. Surgery and post-operative care cryoprotection. Samples were embedded in OCT Cryo mount® (Histolab products AB, Gothenburg, Sweden) and frozen at −20 °C. The nerves Before surgery, animals were acclimatized to standard laboratory were cut in 8–10 μm thin longitudinal sections in a cryotome and col- conditions and given free access to rat chow and water. The surgical lected on superfrost plus glass (Thermo scientific, Braunschweig, approach for exposing the sciatic nerve, length and location of the Germany) [12]. segment excised from the sciatic nerve, the type and location of closing- up sutures, anesthesia and perioperative management were similar to 3.6.2. Immunohistochemistry previously described studies [10](Fig. 1). Post-operatively, animals Immunohistochemistry in frozen sections was performed for the were observed at least daily and treated with a single injection of following antibodies: Anti-Glial Fibrillary Acidic Protein (GFAP), baytril (5 mg/Kg) for up to 3 days following surgery, acetaminophen polyclonal (Millipore cat#AB5541, 1:300); Anti-β III Tubulin, poly- (64 mg/kg/day) for up to 7 days following surgery and buprenorphine clonal (Millipore cat# AB9354, 1:50); Anti-rat CD4 PE (cat#12–0040- (2×/day, 0.01–0.05 mg/Kg) for up to 3 days following surgery. Sterile 82, 1:50), Anti-CD3 (Santa Cruz sc-20,047, 1:50); Anti-CD8 (Santa Cruz paper rolls and sunflower seeds were offer ad libero to the animals for sc-1177, 1:50); FITC conjugated anti-mouse/human CD45R (B220) environmental enrichment. There was no autophagy or death that oc- antibody (eBioscience cat# 11–0452-81, 1:50); Alexa Fluor 488 con- curred in any of the animals during all experiments.
Recommended publications
  • Development of a Z-Stack Projection Imaging Protocol for a Nerve Allograft
    DEVELOPMENT OF A Z-STACK PROJECTION IMAGING PROTOCOL FOR A NERVE ALLOGRAFT by SELVAANISH SELVAM Submitted in partial fulfillment of the requirements for the degree of Master of Science Dissertation Advisor: Dr. George F. Muschler Department of Biomedical Engineering CASE WESTERN RESERVE UNIVERSITY August 2018 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of Selvaanish Selvam candidate for the degree of (Master of Science) *. Committee Chair Dr. George F. Muschler Committee Member Dr. Eben Alsberg Committee Member Dr. Robert Kirsch Committee Member Cynthia Boehm Date of Defense May 4th 2018 *we also certify that written approval has been obtained For any proprietary material contained therein 2 Table of Contents List of Tables……………………………………………………………………..4 Figures List……………………………………………………………………….5 Acknowledgments………………………………………………………………..6 List of Abbreviations………………………………………………………….....7 Abstract…………………………………………………………………………...8 Introduction……………………………………………………………………..10 Methods………………………………………………………………………….21 Data and Analysis………………………………………………………………31 Conclusions and Future Directions……………………………………………51 References……………………………………………………………………….53 3 List of Tables Table 1: Overall summary of ratios and retention rates……………………..31 Table 2: Selection Ratio for grafts (3X – 10-minute rinse) ………………….35 Table 3: Selection Ratio for grafts (15-minute soak) ………………………...35 4 List of Figures: Figure 1: 2D 10X DAPI stained image using current techniques…….……….9 Figure 2: Peripheral Nerve Anatomy………………………………………….10
    [Show full text]
  • Restoration of Neurological Function Following Peripheral Nerve Trauma
    International Journal of Molecular Sciences Review Restoration of Neurological Function Following Peripheral Nerve Trauma Damien P. Kuffler 1,* and Christian Foy 2 1 Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR 00901, USA 2 Section of Orthopedic Surgery, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00901, USA; [email protected] * Correspondence: dkuffl[email protected] Received: 12 January 2020; Accepted: 3 March 2020; Published: 6 March 2020 Abstract: Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery.
    [Show full text]
  • A Comparative Study of Acellular Nerve Xenografts and Allografts in Repairing Rat Facial Nerve Defects
    6330 MOLECULAR MEDICINE REPORTS 12: 6330-6336, 2015 A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects HAITAO HUANG1,2*, HONGXI XIAO3*, HUAWEI LIU1, YU NIU4, RONGZENG YAN1 and MIN HU1 1Department of Stomatology, Chinese PLA General Hospital, Beijing 100853; 2Department of Stomatology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011; 3Department of Stomatology, The 309th Hospital of Chinese PLA, Beijing 100083; 4Department of Maxillofacial Surgery, The Second Hospital of Liaohe Oil Field, Panjin, Liaoning 124010, P.R. China Received October 1, 2014; Accepted June 26, 2015 DOI: 10.3892/mmr.2015.4123 Abstract. Acellular nerves are composed of a basal lamina gap is usually too large to allow primary end-to-end nerve tube, which retains sufficient bioactivity to promote axon coaptation in the absence of tension. Under these conditions, regeneration, thereby repairing peripheral nerve gaps. reconstruction of the peripheral nerve gap with grafts is neces- However, the clinical application of acellular allografts has sary, in order to avoid the complete loss of motor function and been restricted due to its limited availability. To investigate sensation of the affected area. For the past 100 years, recon- whether xenografts, a substitute to allograft acellular nerves in struction of the peripheral nerve gap has been achieved with abundant supply, could efficiently promote nerve regeneration, autografts, as these offered the highest chance of functional rabbit and rat acellular nerve grafts were used to reconstruct recovery (1). However, limited amounts of donor nerve, as 1 cm defects in Wistar rat facial nerves. Autologous peroneal well as deficitsin the donor area following nerve graft harvest nerve grafts served as a positive control group.
    [Show full text]
  • First Human Experience with Autologous Schwann Cells to Supplement Sciatic Nerve Repair: Report of 2 Cases with Long-Term Follow-Up
    NEUROSURGICAL FOCUS Neurosurg Focus 42 (3):E2, 2017 First human experience with autologous Schwann cells to supplement sciatic nerve repair: report of 2 cases with long-term follow-up Zachary C. Gersey, MS, S. Shelby Burks, MD, Kim D. Anderson, PhD, Marine Dididze, MD, PhD, Aisha Khan, MS, MBA, W. Dalton Dietrich, PhD, and Allan D. Levi, MD, PhD Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida OBJECTIVE Long-segment injuries to large peripheral nerves present a challenge to surgeons because insufficient donor tissue limits repair. Multiple supplemental approaches have been investigated, including the use of Schwann cells (SCs). The authors present the first 2 cases using autologous SCs to supplement a peripheral nerve graft repair in hu- mans with long-term follow-up data. METHODS Two patients were enrolled in an FDA-approved trial to assess the safety of using expanded populations of autologous SCs to supplement the repair of long-segment injuries to the sciatic nerve. The mechanism of injury included a boat propeller and a gunshot wound. The SCs were obtained from both the sural nerve and damaged sciatic nerve stump. The SCs were expanded and purified in culture by using heregulin b1 and forskolin. Repair was performed with sural nerve grafts, SCs in suspension, and a Duragen graft to house the construct. Follow-up was 36 and 12 months for the patients in Cases 1 and 2, respectively. RESULTS The patient in Case 1 had a boat propeller injury with complete transection of both sciatic divisions at midthigh.
    [Show full text]
  • Recent Advances and Developments in Neural Repair and Regeneration for Hand Surgery Mukai Chimutengwende-Gordon* and Wasim Khan
    The Open Orthopaedics Journal, 2012, 6, (Suppl 1: M13) 103-107 103 Open Access Recent Advances and Developments in Neural Repair and Regeneration for Hand Surgery Mukai Chimutengwende-Gordon* and Wasim Khan University College London Institute of Orthopaedic and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK Abstract: End-to-end suture of nerves and autologous nerve grafts are the ‘gold standard’ for repair and reconstruction of peripheral nerves. However, techniques such as sutureless nerve repair with tissue glues, end-to-side nerve repair and allografts exist as alternatives. Biological and synthetic nerve conduits have had some success in early clinical studies on reconstruction of nerve defects in the hand. The effectiveness of nerve regeneration could potentially be increased by using these nerve conduits as scaffolds for delivery of Schwann cells, stem cells, neurotrophic and neurotropic factors or extracellular matrix proteins. There has been extensive in vitro and in vivo research conducted on these techniques. The clinical applicability and efficacy of these techniques needs to be investigated fully. Keywords: Conduits, Grafts, Repair, Neurotrophic factors, Schwann cells. INTRODUCTION (fascicle). The epineurium is the outermost covering of the nerve and is primarily a protective layer [7, 8]. Peripheral nerve injury affecting the upper limbs is a significant problem requiring efficient management in order The hand is supplied by the median, ulnar and radial to avoid disability. The function of the hand is especially nerves. The median nerve originates in the brachial plexus dependent on its sensory and motor nerves [1-2]. Some and is formed as a branch when the lateral and medial cords studies have reported that more than 60% of peripheral nerve join.
    [Show full text]
  • Enhancing Nerve Regeneration in the Peripheral Nervous System Using
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system Anup Dutt hS arma Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biomedical Commons, Chemical Engineering Commons, and the Nanoscience and Nanotechnology Commons Recommended Citation Sharma, Anup Dutt, "Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system" (2016). Graduate Theses and Dissertations. 15082. https://lib.dr.iastate.edu/etd/15082 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system by Anup Dutt Sharma A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Chemical Engineering Program of Study Committee: Surya K. Mallapragada, Co-Major Professor Donald S. Sakaguchi, Co-Major Professor Balaji Narasimhan Kaitlin
    [Show full text]
  • Commercialization of Epineural Conduits For
    COMMERCIALIZATION OF EPINEURAL CONDUITS FOR ENHANCEMENT OF NERVE REGENERATION IN SEGMENTAL NERVE DEFECTS by BRYCE GOODMAN Submitted in partial fulfillment of the requirements For the degree of Master of Science Department of Biology CASE WESTERN RESERVE UNIVERSITY August, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Bryce Goodman candidate for the Master of Science degree *. (signed) Christopher A Cullis PhD (chair of the committee) Hillel Chiel PhD Jean Burns PhD Elizabeth Sump BS _____________________________________________ _____________________________________________ (date) June 18th, 2012 *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables……………………………………………………………………….iv List of Figures…………………………………………………………………….. v Abbreviations........................................................................................................... 1 Abstract…………………………………………………………………………… 3 1 Technology Background…………………………………………………. 4 1.1 The Golden Standard and Nerve Autografts…………………………. 11 1.2 Sural (Sensory Nerve) Autograft High Failure Rate............................. 13 1.3 Regenerating Motor Versus Sensory Over a Nerve Gap...................... 17 1.4 Obstacles of Epineural Conduit and Patch............................................ 19 1.5 Wallerian Degeneration Review…………………………………….. 20 1.6 Internship at CTEC…………………………………………………... 22 2 Business Plans (Exit Strategies)…………………………………………. 24
    [Show full text]
  • Peripheral Nerve Injury and Repair
    Peripheral Nerve Injury and Repair Steve K. Lee, MD, and Scott W. Wolfe, MD Abstract Peripheral nerve injuries are common, and there is no easily available formula sheath. The perineurial layer is the for successful treatment. Incomplete injuries are most frequent. Seddon classi- major contributor to nerve tensile fied nerve injuries into three categories: neurapraxia, axonotmesis, and neu- strength. The endoneurium is the rotmesis. After complete axonal transection, the neuron undergoes a number of innermost loose collagenous matrix degenerative processes, followed by attempts at regeneration. A distal growth within the fascicles. Axons run cone seeks out connections with the degenerated distal fiber. The current surgi- through the endoneurium and are cal standard is epineurial repair with nylon suture. To span gaps that primary protected and nourished by this repair cannot bridge without excessive tension, nerve-cable interfascicular auto- layer.1 grafts are employed. Unfortunately, results of nerve repair to date have been no Sunderland has demonstrated better than fair, with only 50% of patients regaining useful function. There is that fascicles within major peripheral much ongoing research regarding pharmacologic agents, immune system modu- nerves repeatedly divide and unite lators, enhancing factors, and entubulation chambers. Clinically applicable to form fascicular plexuses.1 This developments from these investigations will continue to improve the results of leads to frequent changes in the treatment of nerve injuries. cross-sectional topography of fas- J Am Acad Orthop Surg 2000;8:243-252 cicles in the peripheral nerves. In general, the greatest degree of fascic- ular cross-branching occurs in the lumbar and brachial plexus regions.
    [Show full text]
  • COMPARISON of AUTOGRAFTS VS. ALLOGRAFTS in the SURGICAL REPAIR of PEDIATRIC OBSTETRICAL BRACHIAL PLEXUS INJURIES a Thesis Submi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Arizona COMPARISON OF AUTOGRAFTS VS. ALLOGRAFTS IN THE SURGICAL REPAIR OF PEDIATRIC OBSTETRICAL BRACHIAL PLEXUS INJURIES A thesis submitted to the University of Arizona College of Medicine – Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine Laura G. Hamant Class of 2019 Mentor: P. David Adelson, MD, FACS, FAAP, FAANS Acknowledgements: S. Danielle Brown RN MSN Abstract Background: For patients with Obstetrical Brachial Plexus Injury (OBPI) that do not obtain a functional recovery, treatment is primarily surgical in nature. Surgical treatment involves removal of scar tissue, neurolysis, and then bridging the nerve discontinuity or block with a nerve graft. Standardly, nerve graft was autograft using sural nerve. More recently, a decellularized processed cadaveric nerve allograft (Axogen) has been utilized in numerous peripheral nerve injury repairs but has not been used in pediatric OBPI. Both types of nerve graft potentially provide a three-dimensional extracellular matrix that promotes Schwann cell migration and axon regeneration. Object: To determine the functional efficacy of acellular processed nerve allografts (Axogen) as compared to sural nerve autografts taken at time of surgery. Methods: This is a retrospective case cohort of patients who underwent surgical repair of an OBPI at Barrow Neurological Institute at Phoenix Children’s Hospital using either a sural nerve autograft or a decellularized processed cadaveric nerve allograft (Axogen). There were 50 patients total, 22 in the autograft (control) and 30 in the allograft (intervention) groups. The primary outcome measures were motor strength and functionality measured by the British motor strength score and Mallet score, respectively.
    [Show full text]
  • Avance Nerve Graft Instructions For
    5. Handle Avance® Nerve Graft by outer most epineurium and avoid determined by the Centers for Medicare and Medicaid Services crimping or crushing the graft. (CMS). Testing is conducted using test kits approved by the US 6. Implant Avance® Nerve Graft using the same tensionless surgical FDA. As disease screening methods are limited, certain diseases technique used when implanting a nerve autograft. Either end of may not be detected. The following complications of tissue the processed nerve allograft can be coapted to the proximal stump transplantation may occur: of the host nerve. 7. Destroy any thawed allograft tissue not used in the surgical -Transmission of diseases of unknown etiology; procedure in accordance with local, state and federal or country -Transmission of known infectious agents including, but not regulations for disposal of human tissue. limited to viruses, bacteria, and fungi. 8. Complete and send the Tissue Utilization Report (TUR) back to AxoGen. DISPOSAL Dispose of Avance® Nerve Graft in accordance with local, state and TISSUE UTILIZATION REPORT (TUR) federal or country regulations for disposal of human tissue. Each Avance® Nerve Graft package contains a Tissue Utilization Report (TUR). In accordance with US FDA, US Joint Commission and REFERENCES international requirements, a TUR should be completed for each 1. ISO 11137:2006 Sterilization of health care products — Radiation ® Avance Nerve Graft used in the procedure and returned to AxoGen guidelines or other representative as described on the TUR. 2. ISO 10993:2003 Biological evaluation of medical devices Record the distinct HCT/P identification code in hospital or facility records INQUIRIES and in the patient’s file.
    [Show full text]
  • Reconstruction of Critical Nerve Defects Using Allogenic Nerve Tissue: a Review of Current Approaches
    International Journal of Molecular Sciences Review Reconstruction of Critical Nerve Defects Using Allogenic Nerve Tissue: A Review of Current Approaches Tim Kornfeld , Anton Borger and Christine Radtke * Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; [email protected] (T.K.); [email protected] (A.B.) * Correspondence: [email protected]; Tel.: +43-01-404-006-9860; Fax: +43-01-404-006-9880 Abstract: Regardless of the nerve defect length, nerve injury is a debilitating condition for the affected patient that results in loss of sensory and motor function. These functional impairments can have a profound impact on the patient’s quality of life. Surgical approaches for the treatment of short segment nerve defects are well-established. Autologous nerve transplantation, considered the gold standard, and the use of artificial nerve grafts are safe and successful procedures for short segment nerve defect reconstruction. Long segment nerve defects which extend 3.0 cm or more are more problematic for repair. Methods for reconstruction of long defects are limited. Artificial nerve grafts often fail to regenerate and autologous nerve grafts are limited in length and number. Cadaveric processed/unprocessed nerve allografts are a promising alternative in nerve surgery. This review gives a systematic overview on pre-clinical and clinical approaches in nerve allograft transplantation. Keywords: FDA; artificial nerve grafts; allograft Citation: Kornfeld, T.; Borger, A.; Radtke, C. Reconstruction of Critical Nerve Defects Using Allogenic Nerve 1. Introduction Tissue: A Review of Current Loss of motoric function and sensitivity in the distributed region of a peripheral nerve Int.
    [Show full text]
  • Biocompatibility of Different Nerve Tubes
    Materials 2009, 2, 1480-1507; doi:10.3390/ma2041480 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Biocompatibility of Different Nerve Tubes Felix Stang 1,*, Gerburg Keilhoff 2 and Hisham Fansa 3 1 Department of Plastic, Reconstructive and Hand Surgery, University of Luebeck, 23538 Luebeck, Germany 2 Institute of Biochemistry and Cell Biology, University of Magdeburg, 39120 Magdeburg, Germany; E-Mail: [email protected] 3 Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld- Mitte, 33604 Bielefeld, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-451-5002061; Fax: +49-451-5002190. Received: 27 August 2009; in revised form: 24 September 2009 / Accepted: 25 September 2009 / Published: 30 September 2009 Abstract: Bridging nerve gaps with suitable grafts is a major clinical problem. The autologous nerve graft is considered to be the gold standard, providing the best functional results; however, donor site morbidity is still a major disadvantage. Various attempts have been made to overcome the problems of autologous nerve grafts with artificial nerve tubes, which are “ready-to-use” in almost every situation. A wide range of materials have been used in animal models but only few have been applied to date clinically, where biocompatibility is an inevitable prerequisite. This review gives an idea about artificial nerve tubes with special focus on their biocompatibility in animals and humans. Keywords: nerve tube; nerve repair; biocompatibility; artificial nerve; peripheral nerve 1. Introduction Peripheral nerve repair is still a challenge in reconstructive surgery.
    [Show full text]