2008-11-03 9806788.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Abstract The linear response function, which describes the change in the electron density induced by a change in the external potential, is the basis for a broad variety of applications. Three of these are addressed in the present thesis. In the first part, optical spectra of metallic surfaces are investigated. Quasiparticle energies, i.e., energies required to add or remove an electron from a system, are evaluated for selected metals in the second part. The final part of this thesis is devoted to an improved description of the ground-state electron correlation energy. In the first part, the linear response function is used to evaluate optical properties of metallic surfaces. In recent years, reflectance difference (RD) spectroscopy has provided a sensitive experimental method to detect changes in the surface structure and morphology. The interpretation of the resulting spectra, which are linked to the anisotropy of the surface dielectric tensor, however, is often difficult. In the present thesis, we simulate RD spectra for the bare, as well as oxygen and carbon monoxide covered, Cu(110) surface, and assign features in these spectra to the corresponding optical transitions. A good qualitative agreement between our RD spectra and the experimental data is found. Density functional theory (DFT) gives only access to the ground state energy. Quasi- particle energies should, however, be addressed within many body perturbation theory. In the second part of this thesis, we investigate quasiparticle energies for the transition metals Cu, Ag, Fe, and Ni using the Green’s function based GW approximation, where the screened Coulomb interaction W is linked to the linear response function. The fundamental limitation of density function theory is the approximation of the exchange- correlation energy. An exact expression for the exchange-correlation energy can be found by the adiabatic-connection fluctuation-dissipation theorem (ACFDT), linking the linear re- sponse function to the electron correlation energy. This expression has been implemented in the Vienna Ab-initio Simulation Package (VASP). Technical issues and ACFDT results obtained for molecules and extended systems, are addressed in the third and last part of this thesis. Although we make use of the random phase approximation (RPA), we find that the correct long-range van der Waals interaction for rare gas solids is reproduced and geometrical properties for insulators, semiconductors, and metals are in very good agreement with exper- iment. Atomization energies, however, are not significantly improved compared to standard DFT functionals like PBE. iii Zusammenfassung Die Polarisationsfunktion, welche die lineare Dichte¨anderung durch eine kleine Anderung¨ des ¨außeren Potentials beschreibt, ist die Grundlage zur Berechnung der unterschiedlichsten physikalischen Gr¨oßen. Drei davon werden im Rahmen dieser Dissertation untersucht. Zuerst werden optische Spektren von metallischen Oberfl¨achen berechnet. Im zweiten Teil werden f¨ur ausgew¨ahlte Metalle Quasiteilchenenergien berechnet, also diejenigen Energien, welche ben¨otigt werden, um ein Elektron aus dem System zu entfernen bzw. hinzuzuf¨ugen. Der dritte Teil ist schließlich einer verbesserten Beschreibung der elektronischen Korrelationsen- ergie gewidmet. Im ersten Teil dieser Dissertation werden optische Spektren von metallischen Oberfl¨achen mit Hilfe der Polarisationsfunktion berechnet. In den letzten Jahren erwies sich die reflectance difference (RD) Spektroskopie als eine experimentelle Methode, die sehr empfindlich auf Anderungen¨ der Oberfl¨achenstruktur reagiert. Eine Interpretation der RD Spektren, welche auf die Anisotropie des dielektrischen Oberfl¨achentensors zur¨uckgehen, ist allerdings oftmals schwierig. Um eine Interpretation zu erleichtern, berechnen wir die RD Spektren sowohl f¨ur die reine, als auch f¨ur die Sauerstoff und Kohlenmonoxid bedeckte Cu(110) Oberfl¨ache. Die berechneten Daten stimmen gut mit den experimentellen Werten ¨uberein und erlauben eine genaue Analyse der Spektren in Bezug auf die zugrunde liegenden optischen Uberg¨ange.¨ Die Dichtefunktionaltheorie erlaubt allein die Bestimmung der Grundzustandsenergie. Zur Berechnung der Quasiteilchenenergien muss jedoch die Vielteilchenst¨orungstheorie heran- gezogen werden. Im zweiten Teil dieser Dissertation werden Quasiteilchenenergien f¨ur die Ubergangsmetalle¨ Cu, Ag, Fe und Ni berechnet. Dabei wird die auf der Greensfunktion basierende GW N¨aherung verwendet, wobei W, die abgeschirmte Coulombwechselwirkung, von der Polarisationsfunktion abh¨angt. Das Fehlen einer exakten Beschreibung der Austausch- und Korrelationsenergie ist die fundamentale Schwachstelle der Dichtefunktionaltheorie. Ein exakter Ausdruck dieser En- ergie kann allerdings mit Hilfe des adiabatic-connection fluctuation-dissipation Theorems (ACFDT) aufgestellt werden. Dabei wird die Korrelationsenergie in Abh¨angigkeit von der Polarisationsfunktion dargestellt. Routinen zur Berechnung der ACFDT Korrelationsenergie wurden im Vienna Ab-Initio Simulation Package (VASP) implementiert. Details zur Im- plementierung und Ergebnisse f¨ur molekulare und ausgedehnte Systeme werden im dritten und letzten Teil dieser Dissertation behandelt. Obwohl die ACFDT Korrelationsenergie nur n¨aherungsweise mit Hilfe der random phase approximation (RPA) berechnen wird, wird die langreichweitige van der Waals Wechselwirkung f¨ur Edelgaskristalle richtig wiedergegeben, und die ACFDT Geometrien von Isolatoren, Halbleitern und Metallen stimmen sehr gut mit den experimentellen Werten ¨uberein. v Contents Abstract iii I Theory 1 1 Density functional theory 5 1.1 TheoremofHohenberg-Kohn . 5 1.2 Kohn-Shamdensityfunctionaltheory . ...... 5 1.3 DFTinpractice................................... 8 1.3.1 Planewaves................................. 8 1.3.2 Projector augmented wave method . 8 2 Optical properties within linear response theory 12 2.1 Time-dependent density functional theory . ......... 12 2.2 Linearresponsetheory. 13 2.3 Dielectric function - macroscopic continuum considerations .......... 18 2.4 Macroscopic and microscopic quantities . ........ 19 2.5 Longitudinal dielectric function . ........ 21 2.6 Approximations.................................. 22 2.7 Calculation of optical properties . ....... 23 2.7.1 PAWresponsefunction .......................... 25 2.7.2 Long-wavelength dielectric function . ....... 27 2.8 Intraband transitions and the plasma frequency . .......... 28 2.9 f-sum rule and interband transitions at small energies . ............ 32 3 Total energies from linear response theory 35 3.1 Adiabatic connection dissipation-fluctuation theorem ............. 36 3.1.1 Adiabatic connection . 36 3.1.2 Fluctuation-dissipation theorem . ..... 37 3.2 Randomphaseapproximation . 40 3.3 Calculating the RPA correlation energy in practice . ........... 41 4 GW quasiparticle energies 44 4.1 TheGWapproximation .............................. 45 4.2 Solving the quasiparticle equation . ....... 46 vii viii CONTENTS II Reflectance difference spectra 49 5 Calculating reflectance difference spectra 51 5.1 Three-phasemodel ................................ 51 5.2 Calculation of the dielectric function . ......... 55 6 Optical properties of bulk systems 58 6.1 Plasmafrequencies ............................... 58 6.2 Dielectric function of bulk copper . ....... 59 6.2.1 Bands .................................... 60 6.2.2 k-pointconvergence ............................ 61 6.2.3 Hilberttransformation. 62 6.2.4 Final form of bulk dielectric function and comparison ......... 63 7 Optical calculations for Cu(110) surfaces 66 7.1 Geometryofsurfaces.............................. 66 7.2 Convergencetests................................ 68 7.2.1 Vacuum................................... 69 7.2.2 k-points................................... 70 7.2.3 Interband transitions at small frequencies . ........ 70 7.2.4 Numberoflayers .............................. 72 7.3 RDS spectra and interpretation . ..... 73 7.3.1 BandStructure............................... 75 7.3.2 Reflectance difference spectra . 78 8 Conclusions and Summary 83 III GW calculations 85 9 Quasiparticle energies for metals 86 9.1 Noblemetals-CuandAg............................. 86 9.2 Ferromagnets:Fe,Ni.............................. 92 IV Total energies from ACFDT 99 10 Implementation of the ACFDT routines 101 10.1 Dependence on dimension of the response function . .......... 102 10.2 Frequencyintegration . 106 10.3 k-point convergence and Γ-point correction for metals ............. 109 10.3.1 Γ-point corrections: Technical details . ......... 111 11 Application of the ACFDT 114 11.1 Molecules - H2, O2, N2 ............................... 114 11.2 Rare-gassolids-Ne,Ar,Kr . 117 11.3 Homogenous electron gas . 122 CONTENTS ix 11.4 Metals-Na,Al,Cu,Rh,Pd. 125 11.5Solids ........................................ 130 11.5.1 Lattice constants and bulk moduli . 133 11.5.2 Atomization energies . 143 12 Conclusions and Summary 150 Bibliography 153 List of Publications 161 Acknowledgments 163 Curriculum vitae 165 Part I Theory 1 2 The non-relativistic Schr¨odinger equation for N electrons moving in an external potential vext considering decoupling of ionic and electronic degrees of freedom (Born-Oppenheimer approximation) is given as: 2 N 2 ¯h 2 1 e − ∇ri + + vext(xi, {R})+ Eion({R}) Ψ({x})= 2m 2 |ri − rj| Xi=1 Xi6=j Xi = E({R}) Ψ({x}), (1) where the electron energy is parametric depending on the ionic coordinates {R} and x = (r,s) denotes both electron positions and spins. In the further discussion
Recommended publications
  • 1 Response Functions in TDDFT: Concepts and Implementation

    1 Response Functions in TDDFT: Concepts and Implementation

    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC 1 Response functions in TDDFT: concepts and implementation David A. Strubbe, Lauri Lehtovaara, Angel Rubio, Miguel A. L. Marques, and Steven G. Louie David A. Strubbe Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720-7300, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA [email protected] Lauri Lehtovaara Laboratoire de Physique de la Mati`ere Condens´ee et Nanostructures, Univer- sit´eClaude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France [email protected] Angel Rubio Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Dpto. F´ısica de Materiales, Universidad del Pa´ıs Vasco, Centro de F´ısica de Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebasti´an, Spain and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin D-14195, Germany [email protected] Miguel A. L. Marques Laboratoire de Physique de la Mati`ere Condens´ee et Nanostructures, Univer- sit´eClaude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France [email protected] Steven G. Louie Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720-7300, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA [email protected] Many physical properties of interest about solids and molecules can be considered as the reaction of the system to an external perturbation, and can be expressed in terms of response functions, in time or frequency and in real or reciprocal space.
  • Quantum Systems: Introduction • to Further Apply Linear Response Theory to Spectroscopic Problems We Need to Extend the Formalism to Quantum Systems

    Quantum Systems: Introduction • to Further Apply Linear Response Theory to Spectroscopic Problems We Need to Extend the Formalism to Quantum Systems

    University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Lecture 21: Survey of Quantum Statistics 05/17/10 J.L. McHale “Molecular Spectroscopy” Prentiss-Hall, 1999. McQuarrie: Ch. 21-8 R. Kubo “The Fluctuation-Dissipation Theorem” Rep. Prog. Phys. 29, 255 1966. R. Kubo, Statistical Mechanical Theory of Irreversible Processes I. J. Phys. Soc. Jpn. 12(6), 570 1957. A. Summary of Linear Response Theory • In the last few lectures we established several key relationships. This includes the displacement of a property B of a system from equilibrium by the application of a weak field t ∆=B tBtB − = dsFstsφ − (21.1) () () 0 ∫ ()BA ( ) −∞ where the linear response or after-effect function is 1 φ tdXfBtA===−,0 BtA ,0 BtA 0 (21.2) BA ()∫ 0 {} () ( ) {}() ( ) () ( ) kTB • If the field is time dependent i.e. Ft( ) = Fω cosω tthen t ⎡ ∞ ⎤ ∆=B tdsFstsFeeφ −=Re itωωτ− i φττ d ()∫∫ ()BA ( )ω ⎢ BA ( ) ⎥ −∞ ⎣ 0 ⎦ (21.3) ⎡⎤itω ′′′ ==+FeωωRe⎣⎦χωBA () F() χω () cos ωχω t () sin ω t • In equation (21.3) χ ()ωχωχω=−′( ) i ′′ ( ) is the one-sided Fourier transform of the response function and is called the complex susceptibility. The real part is related to the cycle-averaged reversible work done by the field on the system Uω and the imaginary part is related to the dissipation of energy from the field by the system Dω . FF22ω U=⋅ωωχ′′′()ωχω and D = () (21.4) ωω22BA BA • A fundamental relationship between the imaginary part of the susceptibility and the correlation function is the fluctuation-dissipation theorem: ω ∞ χ′′ ωω= dt A0cos B t t (21.5) BA () ∫ () () kT 0 • Finally, as a result of the causality of the linear response function (φBA ()t = 0 if t<0) the real and imaginary parts of the complex susceptibility are related by the Kramers-Kronig relations: 2 +∞ yyχ′′ ( ) χω′()=℘ dy πω∫ y22− 0 (21.6) 2ω +∞ χ′()y χω′′ =− ℘ dy () ∫ 22 πω0 y − • The physical meaning of the real and imaginary parts of the complex susceptibility can be given further meaning by way of example.
  • Capacitance Contents

    Capacitance Contents

    Capacitance Contents 1 Capacitance 1 1.1 Capacitors ............................................... 1 1.1.1 Voltage-dependent capacitors ................................. 2 1.1.2 Frequency-dependent capacitors ............................... 2 1.2 Capacitance matrix .......................................... 3 1.3 Self-capacitance ............................................ 4 1.4 Stray capacitance ........................................... 4 1.5 Capacitance of simple systems .................................... 4 1.6 Capacitance of nanoscale systems ................................... 4 1.6.1 Single-electron devices .................................... 5 1.6.2 Few-electron devices ..................................... 5 1.7 See also ................................................ 6 1.8 References ............................................... 6 1.9 Further reading ............................................ 7 2 Dielectric 8 2.1 Terminology .............................................. 8 2.2 Electric susceptibility ......................................... 8 2.2.1 Dispersion and causality ................................... 9 2.3 Dielectric polarization ......................................... 9 2.3.1 Basic atomic model ...................................... 9 2.3.2 Dipolar polarization ...................................... 10 2.3.3 Ionic polarization ....................................... 10 2.4 Dielectric dispersion .......................................... 10 2.5 Dielectric relaxation .........................................
  • Response Functions of Correlated Systems in the Linear Regime and Beyond

    Response Functions of Correlated Systems in the Linear Regime and Beyond

    Response functions of correlated systems in the linear regime and beyond Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von M.Sc. Agnese Tagliavini aus Ferrara, Italien Tübingen, 2018 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eber- hard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 9 November 2018 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Sabine Andergassen 2. Berichterstatter: Prof. Dr. Alessandro Toschi Abstract The technological progress in material science has paved the way to engineer new con- densed matter systems. Among those, fascinating properties are found in presence of strong correlations among the electrons. The maze of physical phenomena they exhibit is coun- tered by the difficulty in devising accurate theoretical descriptions. This explains the plethora of approximated theories aiming at the closest reproduction of their properties. In this respect, the response of the system to an external perturbation bridges the experi- mental evidence with the theoretical description, representing a testing ground to prove or disprove the validity of the latter. In this thesis we develop a number of theoretical and numerical strategies to improve the computation of linear response functions in several of the forefront many-body techniques. In particular, the development of computationally efficient schemes, driven by physical arguments, has allowed (i) improvements in treating the local two-particle correlations and scattering functions, which represent essential building blocks for established non- perturbative theories, such as dynamical mean field theory (DMFT) and its diagrammatic extensions and (ii) the implementation of the groundbreaking multiloop functional renor- malization group (mfRG) technique and its application to a two-dimensional Hubbard model.
  • Linear Response in Theory of Electron Transfer Reactions As an Alternative to the Molecular Harmonic Oscillator Model Yuri Georgievskii, Chao-Ping Hsu, and R

    Linear Response in Theory of Electron Transfer Reactions As an Alternative to the Molecular Harmonic Oscillator Model Yuri Georgievskii, Chao-Ping Hsu, and R

    JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 11 15 MARCH 1999 Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model Yuri Georgievskii, Chao-Ping Hsu, and R. A. Marcus Noyes Laboratory of Chemical Physics, Mail Code 127-72, California Institute of Technology, Pasadena, California 91125 ~Received 21 October 1998; accepted 16 December 1998! The effect of solvent fluctuations on the rate of electron transfer reactions is considered using linear response theory and a second-order cumulant expansion. An expression is obtained for the rate constant in terms of the dielectric response function of the solvent. It is shown thereby that this expression, which is usually derived using a molecular harmonic oscillator ~‘‘spin-boson’’! model, is valid not only for approximately harmonic systems such as solids but also for strongly molecularly anharmonic systems such as polar solvents. The derivation is a relatively simple alternative to one based on quantum field theoretic techniques. The effect of system inhomogeneity due to the presence of the solute molecule is also now included. An expression is given generalizing to frequency space and quantum mechanically the analogue of an electrostatic result relating the reorganization free energy to the free energy difference of two hypothetical systems @J. Chem. Phys. 39, 1734 ~1963!#. The latter expression has been useful in adapting specific electrostatic models in the literature to electron transfer problems, and the present extension can be expected to have a similar utility. © 1999 American Institute of Physics. @S0021-9606~99!01511-1# I. INTRODUCTION approach of Levich and Dogonadze, subsequently used as a common model to treat quantum aspects of ET reactions,14,15 Interaction with an environment plays a crucial role in required justification.
  • PHY-892 Problème À N-Corps (Notes De Cours)

    PHY-892 Problème À N-Corps (Notes De Cours)

    PHY-892 Problème à N-corps (notes de cours) André-Marie Tremblay Automne 2005 2 Contents I Introduction: Correlation functions and Green’s func- tions. 11 1Introduction 13 2 Correlation functions 15 2.1 Relation between correlation functions and experiments . 16 2.2Linear-responsetheory......................... 19 2.2.1 SchrödingerandHeisenbergpictures.............. 20 2.2.2 Interactionpictureandperturbationtheory......... 21 2.2.3 Linearresponse......................... 23 2.3Generalpropertiesofcorrelationfunctions.............. 24 2.3.1 Notations and definitions................... 25 2.3.2 Symmetrypropertiesoftheresponsefunctions....... 26 2.3.3 Kramers-Kronigrelationsandcausality........... 31 2.3.4 Positivity of ωχ00(ω) anddissipation............. 35 2.3.5 Fluctuation-dissipationtheorem................ 36 2.3.6 Sumrules............................ 38 2.4Kuboformulafortheconductivity.................. 41 2.4.1 Response of the current to external vector and scalar potentials 42 2.4.2 Kuboformulaforthetransverseresponse.......... 43 2.4.3 Kuboformulaforthelongitudinalresponse......... 44 2.4.4 Metals, insulators and superconductors . .......... 49 2.4.5 Conductivity sum rules at finite wave vector, transverse and longitudinal........................... 52 2.4.6 Relation between conductivity and dielectric constant . 54 3 Introduction to Green’s functions. One-body Schrödinger equa- tion 59 3.1 Definition of the propagator, or Green’s function .......... 59 3.2 Information contained in the one-body propagator ......... 60 3.2.1 Operatorrepresentation....................